Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Bull (Beijing) ; 68(15): 1662-1677, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481436

RESUMO

Martynoside (MAR), a bioactive component in several well-known tonic traditional Chinese herbs, exhibits pro-hematopoietic activity during 5-fluorouracil (5-FU) treatment. However, the molecular target and the mechanism of MAR are poorly understood. Here, by adopting the mRNA display with a library of even-distribution (md-LED) method, we systematically examined MAR-protein interactions in vitro and identified the ribosomal protein L27a (RPL27A) as a key cellular target of MAR. Structural and mutational analysis confirmed the specific interaction between MAR and the exon 4,5-encoded region of RPL27A. MAR attenuated 5-FU-induced cytotoxicity in bone marrow nucleated cells, increased RPL27A protein stability, and reduced the ubiquitination of RPL27A at lys92 (K92) and lys94 (K94). Disruption of MAR binding at key residues of RPL27A completely abolished the MAR-induced stabilization. Furthermore, by integrating label-free quantitative ubiquitination proteomics, transcriptomics, and ribosome function assays, we revealed that MAR restored RPL27A protein levels and thus rescued ribosome biogenesis impaired by 5-FU. Specifically, MAR increased mature ribosomal RNA (rRNA) abundance, prevented ribosomal protein degradation, facilitated ribosome assembly, and maintained nucleolar integrity. Collectively, our findings characterize the target of a component of Chinese medicine, reveal the importance of ribosome biogenesis in hematopoiesis, and open up a new direction for improving hematopoiesis by targeting RPL27A.


Assuntos
Bioensaio , Fluoruracila , Fluoruracila/farmacologia , Células da Medula Óssea , Cafeína
2.
Nature ; 593(7859): 418-423, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33727703

RESUMO

The COVID-19 pandemic is the third outbreak this century of a zoonotic disease caused by a coronavirus, following the emergence of severe acute respiratory syndrome (SARS) in 20031 and Middle East respiratory syndrome (MERS) in 20122. Treatment options for coronaviruses are limited. Here we show that clofazimine-an anti-leprosy drug with a favourable safety profile3-possesses inhibitory activity against several coronaviruses, and can antagonize the replication of SARS-CoV-2 and MERS-CoV in a range of in vitro systems. We found that this molecule, which has been approved by the US Food and Drug Administration, inhibits cell fusion mediated by the viral spike glycoprotein, as well as activity of the viral helicase. Prophylactic or therapeutic administration of clofazimine in a hamster model of SARS-CoV-2 pathogenesis led to reduced viral loads in the lung and viral shedding in faeces, and also alleviated the inflammation associated with viral infection. Combinations of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted viral shedding from the upper respiratory tract. Clofazimine, which is orally bioavailable and comparatively cheap to manufacture, is an attractive clinical candidate for the treatment of outpatients and-when combined with remdesivir-in therapy for hospitalized patients with COVID-19, particularly in contexts in which costs are an important factor or specialized medical facilities are limited. Our data provide evidence that clofazimine may have a role in the control of the current pandemic of COVID-19 and-possibly more importantly-in dealing with coronavirus diseases that may emerge in the future.


Assuntos
Antivirais/farmacologia , Clofazimina/farmacologia , Coronavirus/classificação , Coronavirus/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/análogos & derivados , Alanina/farmacologia , Alanina/uso terapêutico , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antivirais/farmacocinética , Antivirais/uso terapêutico , Disponibilidade Biológica , Fusão Celular , Linhagem Celular , Clofazimina/farmacocinética , Clofazimina/uso terapêutico , Coronavirus/crescimento & desenvolvimento , Coronavirus/patogenicidade , Cricetinae , DNA Helicases/antagonistas & inibidores , Sinergismo Farmacológico , Feminino , Humanos , Estágios do Ciclo de Vida/efeitos dos fármacos , Masculino , Mesocricetus , Profilaxia Pré-Exposição , SARS-CoV-2/crescimento & desenvolvimento , Especificidade da Espécie , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética
3.
Bioinformatics ; 35(20): 4200-4202, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30903160

RESUMO

SUMMARY: The interaction between tumor and immune system plays a crucial role in both cancer development and treatment response. To facilitate comprehensive investigation of tumor-immune interactions, we have designed a user-friendly web portal TISIDB, which integrated multiple types of data resources in oncoimmunology. First, we manually curated 4176 records from 2530 publications, which reported 988 genes related to anti-tumor immunity. Second, genes associated with the resistance or sensitivity of tumor cells to T cell-mediated killing and immunotherapy were identified by analyzing high-throughput screening and genomic profiling data. Third, associations between any gene and immune features, such as lymphocytes, immunomodulators and chemokines, were pre-calculated for 30 TCGA cancer types. In TISIDB, biologists can cross-check a gene of interest about its role in tumor-immune interactions through literature mining and high-throughput data analysis, and generate testable hypotheses and high quality figures for publication. AVAILABILITY AND IMPLEMENTATION: http://cis.hku.hk/TISIDB. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sistema Imunitário , Neoplasias , Algoritmos , Humanos , Publicações , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA