Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 9(21)2020 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-32439668

RESUMO

The role of archaeal ammonia oxidizers often exceeds that of bacterial ammonia oxidizers in marine and terrestrial environments but has been understudied in permafrost, where thawing has the potential to release ammonia. Here, three thaumarchaea genomes were assembled and annotated from metagenomic data sets from carbon-poor Canadian High Arctic active-layer cryosols.

2.
Environ Microbiome ; 15(1): 8, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33902738

RESUMO

BACKGROUND: Exceptional preservation of endogenous organics such as collagens and blood vessels has been frequently reported in Mesozoic dinosaur fossils. The persistence of these soft tissues in Mesozoic fossil bones has been challenged because of the susceptibility of proteins to degradation and because bone porosity allows microorganisms to colonize the inner microenvironments through geological time. Although protein lability has been studied extensively, the genomic diversity of microbiomes in dinosaur fossil bones and their potential roles in bone taphonomy remain underexplored. Genome-resolved metagenomics was performed, therefore, on the microbiomes recovered from a Late Cretaceous Centrosaurus bone and its encompassing mudstone in order to provide insight into the genomic potential for microbial alteration of fossil bone. RESULTS: Co-assembly and binning of metagenomic reads resulted in a total of 46 high-quality metagenome-assembled genomes (MAGs) affiliated to six bacterial phyla (Actinobacteria, Proteobacteria, Nitrospira, Acidobacteria, Gemmatimonadetes and Chloroflexi) and 1 archaeal phylum (Thaumarchaeota). The majority of the MAGs represented uncultivated, novel microbial lineages from class to species levels based on phylogenetics, phylogenomics and average amino acid identity. Several MAGs from the classes Nitriliruptoria, Deltaproteobacteria and Betaproteobacteria were highly enriched in the bone relative to the adjacent mudstone. Annotation of the MAGs revealed that the distinct putative metabolic functions of different taxonomic groups were linked to carbon, nitrogen, sulfur and iron metabolism. Metaproteomics revealed gene expression from many of the MAGs, but no endogenous collagen peptides were identified in the bone that could have been derived from the dinosaur. Estimated in situ replication rates among the bacterial MAGs suggested that most of the microbial populations in the bone might have been actively growing but at a slow rate. CONCLUSIONS: Our results indicate that excavated dinosaur bones are habitats for microorganisms including novel microbial lineages. The distinctive microhabitats and geochemistry of fossil bone interiors compared to that of the external sediment enrich a microbial biomass comprised of various novel taxa that harbor multiple gene sets related to interconnected biogeochemical processes. Therefore, the presence of these microbiomes in Mesozoic dinosaur fossils urges extra caution to be taken in the science of paleontology when hunting for endogenous biomolecules preserved from deep time.

3.
Sci Rep ; 9(1): 20122, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882935

RESUMO

Many prokaryotes encode protein-based encapsulin nanocompartments, including anaerobic ammonium oxidizing (anammox) bacteria. This study expands the list of known anammox encapsulin systems from freshwater species to include the marine genus Scalindua. Two novel systems, identified in "Candidatus Scalindua rubra" and "Candidatus Scalindua sp. SCAELEC01 167" possess different architectures than previously studied freshwater anammox encapsulins. Characterization of the S. rubra encapsulin confirms that it can self-assemble to form compartments when heterologously expressed in Escherichia coli. BLASTp and HMMER searches of additional genomes and metagenomes spanning a range of environments returned 26 additional novel encapsulins, including a freshwater anammox encapsulin identified in "Candidatus Brocadia caroliniensis". Phylogenetic analysis comparing these 28 new encapsulin sequences and cargo to that of their closest known relatives shows that encapsulins cluster by cargo protein type and therefore likely evolved together. Lastly, prokaryotic encapsulins may be more common and diverse than previously thought. Through searching a small sample size of all public metagenomes and genomes, many new encapsulin systems were unearthed by this study. This suggests that many additional encapsulins likely remain to be discovered.


Assuntos
Bactérias/classificação , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Microbiologia Ambiental , Ordem dos Genes , Loci Gênicos , Geografia , Metagenoma , Metagenômica/métodos , Filogenia , Multimerização Proteica , Análise de Sequência de DNA
4.
Microbiol Resour Announc ; 8(46)2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727712

RESUMO

Metagenomic sequencing of active-layer cryosols from the Canadian High Arctic has yielded a nearly complete genome for an atmospheric CH4-oxidizing bacterium belonging to upland soil cluster α (USCα). This genome contains genes involved in CH4 metabolism, H2 metabolism, and multiple carbon assimilation pathways.

5.
Nat Commun ; 10(1): 5268, 2019 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-31754114

RESUMO

The nematode Halicephalobus mephisto was originally discovered inhabiting a deep terrestrial aquifer 1.3 km underground. H. mephisto can thrive under conditions of abiotic stress including heat and minimal oxygen, where it feeds on a community of both chemolithotrophic and heterotrophic prokaryotes in an unusual ecosystem isolated from the surface biosphere. Here we report the comprehensive genome and transcriptome of this organism, identifying a signature of adaptation: an expanded repertoire of 70 kilodalton heat-shock proteins (Hsp70) and avrRpt2 induced gene 1 (AIG1) proteins. The expanded Hsp70 genes are transcriptionally induced upon growth under heat stress, and we find that positive selection is detectable in several members of this family. We further show that AIG1 may have been acquired by horizontal gene transfer (HGT) from a rhizobial fungus. Over one-third of the genes of H. mephisto are novel, highlighting the divergence of this nematode from other sequenced organisms. This work sheds light on the genomic basis of heat tolerance in a complete subterrestrial eukaryotic genome.


Assuntos
Adaptação Fisiológica/genética , Genoma Helmíntico/genética , Resposta ao Choque Térmico , Nematoides/genética , Animais , Ecossistema , Regulação da Expressão Gênica , Ontologia Genética , Transferência Genética Horizontal , Proteínas de Choque Térmico HSP70/genética , Proteínas de Helminto/genética , Nematoides/classificação , Filogenia , Solo/parasitologia , Estresse Fisiológico , Transcriptoma
6.
FEMS Microbiol Ecol ; 95(10)2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31437264

RESUMO

Certain microorganisms survive long periods of time as endospores to cope with adverse conditions. Since endospores are metabolically inactive, the extent of aspartic acid (Asp) racemization will increase over time and might kill the spores by preventing their germination. Therefore, understanding the relationship between endospore survivability and Asp racemization is important for constraining the long-term survivability and global dispersion of spore-forming bacteria in nature. Geobacillus stearothermophilus was selected as a model organism to investigate racemization kinetics and survivability of its endospores at 65°C, 75°C and 98°C. This study found that the Asp racemization rates of spores and autoclaved spores were similar at all temperatures. The Asp racemization rate of spores was not significantly different from that of vegetative cells at 65°C. The Asp racemization rate of G. stearothermophilus spores was not significantly different from that of Bacillus subtilis spores at 98°C. The viability of spores and vegetative cells decreased dramatically over time, and the mortality of spores correlated exponentially with the degree of racemization (R2 = 0.9). This latter correlation predicts spore half-lives on the order of hundreds of years for temperatures typical of shallow marine sediments, a result consistent with studies about the survivability of thermophilic spores found in these environments.


Assuntos
Ácido Aspártico/metabolismo , Geobacillus stearothermophilus/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Ácido Aspártico/química , Bacillus subtilis/genética , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Geobacillus stearothermophilus/crescimento & desenvolvimento , Cinética , Viabilidade Microbiana , Esporos Bacterianos/metabolismo , Esterilização , Temperatura
7.
ISME J ; 13(10): 2391-2402, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31118472

RESUMO

Oxygen minimum zones (OMZs) are marine regions where O2 is undetectable at intermediate depths. Within OMZs, the oxygen-depleted zone (ODZ) induces anaerobic microbial processes that lead to fixed nitrogen loss via denitrification and anammox. Surprisingly, nitrite oxidation is also detected in ODZs, although all known marine nitrite oxidizers (mainly Nitrospina) are aerobes. We used metagenomic binning to construct metagenome-assembled genomes (MAGs) of nitrite oxidizers from OMZs. These MAGs represent two novel Nitrospina-like species, both of which differed from all known Nitrospina species, including cultured species and published MAGs. Relative abundances of different Nitrospina genotypes in OMZ and non-OMZ seawaters were estimated by mapping metagenomic reads to newly constructed MAGs and published high-quality genomes of members from the Nitrospinae phylum. The two novel species were present in all major OMZs and were more abundant inside ODZs, which is consistent with the detection of higher nitrite oxidation rates in ODZs than in oxic seawaters and suggests novel adaptations to anoxic environments. The detection of a large number of unclassified nitrite oxidoreductase genes in the dataset implies that the phylogenetic diversity of nitrite oxidizers is greater than previously thought.


Assuntos
Bactérias/metabolismo , Deltaproteobacteria/metabolismo , Nitritos/metabolismo , Oxigênio/análise , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Deltaproteobacteria/isolamento & purificação , Desnitrificação , Oxirredução , Oxigênio/metabolismo , Filogenia , Água do Mar/análise , Água do Mar/microbiologia
8.
Artigo em Inglês | MEDLINE | ID: mdl-30533830

RESUMO

Metagenomic sequencing of fracture fluid from South Africa recovered a nearly complete "Candidatus Bathyarchaeota" archaeon genome. The metagenome-assembled genome of BE326-BA-RLH contains genes involved in methane metabolism and dissimilatory nitrate reduction. This study presents the first genomic evidence for potential anaerobic methane oxidation in the phylum "Ca. Bathyarchaeota."

9.
Front Microbiol ; 9: 2619, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30450087

RESUMO

Antarctic soil supports surface microbial communities that are dependent on ephemeral moisture. Understanding the response to availability of this resource is essential to predicting how the system will respond to climate change. The McMurdo Dry Valleys are the largest ice-free soil region in Antarctica. They are a hyper-arid polar desert with extremely limited moisture availability. Microbial colonization dominates this ecosystem but surprisingly little is known about how communities respond to changing moisture regimes. We utilized the natural model system provided by transiently wetted soil at lake margins in the Dry Valleys to interrogate microbial responses along a well-defined contiguous moisture gradient and disentangle responses between and within phyla. We identified a striking non-linear response among bacteria where at low moisture levels small changes resulted in a large impact on diversity. At higher moister levels community responses were less pronounced, resulting in diversity asymptotes. We postulate that whilst the main drivers of observed community diversity were deterministic, a switch in the major influence occurred from abiotic factors at low moisture levels to biotic interactions at higher moisture. Response between and within phyla was markedly different, highlighting the importance of taxonomic resolution in community analysis. Furthermore, we resolved apparent stochasticity at high taxonomic ranks as the result of deterministic interactions taking place at finer taxonomic and spatial scales. Overall the findings provide new insight on the response to moisture and this will be useful in advancing understanding of potential ecosystem responses in the threatened McMurdo Dry Valleys system.

10.
Front Microbiol ; 9: 1235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29973918

RESUMO

Metatranscriptomics has recently been applied to investigate the active biogeochemical processes and elemental cycles, and in situ responses of microbiomes to environmental stimuli and stress factors. De novo assembly of RNA-Sequencing (RNA-Seq) data can reveal a more detailed description of the metabolic interactions amongst the active microbial communities. However, the quality of the assemblies and the depiction of the metabolic network provided by various de novo assemblers have not yet been thoroughly assessed. In this study, we compared 15 de novo metatranscriptomic assemblies for a fracture fluid sample collected from a borehole located at 1.34 km below land surface in a South African gold mine. These assemblies were constructed from total, non-coding, and coding reads using five de novo transcriptomic assemblers (Trans-ABySS, Trinity, Oases, IDBA-tran, and Rockhopper). They were evaluated based on the number of transcripts, transcript length, range of transcript coverage, continuity, percentage of transcripts with confident annotation assignments, as well as taxonomic and functional diversity patterns. The results showed that these parameters varied considerably among the assemblies, with Trans-ABySS and Trinity generating the best assemblies for non-coding and coding RNA reads, respectively, because the high number of transcripts assembled covered a wide expression range, and captured extensively the taxonomic and metabolic gene diversity, respectively. We concluded that the choice of de novo transcriptomic assemblers impacts substantially the taxonomic and functional compositions. Care should be taken to obtain high-quality assemblies for informing the in situ metabolic landscape.

12.
Front Microbiol ; 8: 867, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28559886

RESUMO

Global patterns in diversity were estimated for cyanobacteria-dominated hypolithic communities that colonize ventral surfaces of quartz stones and are common in desert environments. A total of 64 hypolithic communities were recovered from deserts on every continent plus a tropical moisture sufficient location. Community diversity was estimated using a combined t-RFLP fingerprinting and high throughput sequencing approach. The t-RFLP analysis revealed desert communities were different from the single non-desert location. A striking pattern also emerged where Antarctic desert communities were clearly distinct from all other deserts. Some overlap in community similarity occurred for hot, cold and tundra deserts. A further observation was that the producer-consumer ratio displayed a significant negative correlation with growing season, such that shorter growing seasons supported communities with greater abundance of producers, and this pattern was independent of macroclimate. High-throughput sequencing of 16S rRNA and nifH genes from four representative samples validated the t-RFLP study and revealed patterns of taxonomic and putative diazotrophic diversity for desert communities from the Taklimakan Desert, Tibetan Plateau, Canadian Arctic and Antarctic. All communities were dominated by cyanobacteria and among these 21 taxa were potentially endemic to any given desert location. Some others occurred in all but the most extreme hot and polar deserts suggesting they were relatively less well adapted to environmental stress. The t-RFLP and sequencing data revealed the two most abundant cyanobacterial taxa were Phormidium in Antarctic and Tibetan deserts and Chroococcidiopsis in hot and cold deserts. The Arctic tundra displayed a more heterogenous cyanobacterial assemblage and this was attributed to the maritime-influenced sampling location. The most abundant heterotrophic taxa were ubiquitous among samples and belonged to the Acidobacteria, Actinobacteria, Bacteroidetes, and Proteobacteria. Sequencing using nitrogenase gene-specific primers revealed all putative diazotrophs were Proteobacteria of the orders Burkholderiales, Rhizobiales, and Rhodospirillales. We envisage cyanobacterial carbon input to the system is accompanied by nitrogen fixation largely from non-cyanobacterial taxa. Overall the results indicate desert hypoliths worldwide are dominated by cyanobacteria and that growing season is a useful predictor of their abundance. Differences in cyanobacterial taxa encountered may reflect their adaptation to different moisture availability regimes in polar and non-polar deserts.

13.
Genome Announc ; 5(17)2017 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-28450499

RESUMO

Aerated soils form the second largest sink for atmospheric CH4 A near-complete genome of uncultured upland soil cluster Gammaproteobacteria that oxidize CH4 at <2.5 ppmv was obtained from incubated Antarctic mineral cryosols. This first genome of high-affinity methanotrophs can help resolve the mysteries about their phylogenetic affiliation and metabolic potential.

14.
Front Microbiol ; 7: 1642, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812351

RESUMO

The McMurdo Dry Valleys of Antarctica are an extreme polar desert. Mineral soils support subsurface microbial communities and translucent rocks support development of hypolithic communities on ventral surfaces in soil contact. Despite significant research attention, relatively little is known about taxonomic and functional diversity or their inter-relationships. Here we report a combined diversity and functional interrogation for soil and hypoliths of the Miers Valley in the McMurdo Dry Valleys of Antarctica. The study employed 16S rRNA fingerprinting and high throughput sequencing combined with the GeoChip functional microarray. The soil community was revealed as a highly diverse reservoir of bacterial diversity dominated by actinobacteria. Hypolithic communities were less diverse and dominated by cyanobacteria. Major differences in putative functionality were that soil communities displayed greater diversity in stress tolerance and recalcitrant substrate utilization pathways, whilst hypolithic communities supported greater diversity of nutrient limitation adaptation pathways. A relatively high level of functional redundancy in both soil and hypoliths may indicate adaptation of these communities to fluctuating environmental conditions.

15.
Proc Natl Acad Sci U S A ; 113(49): E7927-E7936, 2016 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-27872277

RESUMO

Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2 Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute <5% of the total DNA and appear to produce sufficient CH4 to support the rest of the diverse community. This paradoxical situation reflects our lack of knowledge about the in situ metabolic diversity and the overall ecological trophic structure of SLiMEs. Here, we show the active metabolic processes and interactions in one of these communities by combining metatranscriptomic assemblies, metaproteomic and stable isotopic data, and thermodynamic modeling. Dominating the active community are four autotrophic ß-proteobacterial genera that are capable of oxidizing sulfur by denitrification, a process that was previously unnoticed in the deep subsurface. They co-occur with sulfate reducers, anaerobic methane oxidizers, and methanogens, which each comprise <5% of the total community. Syntrophic interactions between these microbial groups remove thermodynamic bottlenecks and enable diverse metabolic reactions to occur under the oligotrophic conditions that dominate in the subsurface. The dominance of sulfur oxidizers is explained by the availability of electron donors and acceptors to these microorganisms and the ability of sulfur-oxidizing denitrifiers to gain energy through concomitant S and H2 oxidation. We demonstrate that SLiMEs support taxonomically and metabolically diverse microorganisms, which, through developing syntrophic partnerships, overcome thermodynamic barriers imposed by the environmental conditions in the deep subsurface.


Assuntos
Desnitrificação , Ecossistema , Metano/biossíntese , Microbiota , Enxofre/metabolismo , Processos Autotróficos , Carbono/metabolismo , Nitrogênio/metabolismo , África do Sul
16.
Front Microbiol ; 7: 16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26909068

RESUMO

The role of aerial dispersal in shaping patterns of biodiversity remains poorly understood, mainly due to a lack of coordinated efforts in gathering data at appropriate temporal and spatial scales. It has been long known that the rate of dispersal to an ecosystem can significantly influence ecosystem dynamics, and that aerial transport has been identified as an important source of biological input to remote locations. With the considerable effort devoted in recent decades to understanding atmospheric circulation in the south-polar region, a unique opportunity has emerged to investigate the atmospheric ecology of Antarctica, from regional to continental scales. This concept note identifies key questions in Antarctic microbial biogeography and the need for standardized sampling and analysis protocols to address such questions. A consortium of polar aerobiologists is established to bring together researchers with a common interest in the airborne dispersion of microbes and other propagules in the Antarctic, with opportunities for comparative studies in the Arctic.

17.
ISME J ; 10(3): 730-41, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26325359

RESUMO

Subsurface microbial communities comprise a significant fraction of the global prokaryotic biomass; however, the carbon metabolisms that support the deep biosphere have been relatively unexplored. In order to determine the predominant carbon metabolisms within a 3-km deep fracture fluid system accessed via the Tau Tona gold mine (Witwatersrand Basin, South Africa), metagenomic and thermodynamic analyses were combined. Within our system of study, the energy-conserving reductive acetyl-CoA (Wood-Ljungdahl) pathway was found to be the most abundant carbon fixation pathway identified in the metagenome. Carbon monoxide dehydrogenase genes that have the potential to participate in (1) both autotrophic and heterotrophic metabolisms through the reversible oxidization of CO and subsequent transfer of electrons for sulfate reduction, (2) direct utilization of H2 and (3) methanogenesis were identified. The most abundant members of the metagenome belonged to Euryarchaeota (22%) and Firmicutes (57%)-by far, the highest relative abundance of Euryarchaeota yet reported from deep fracture fluids in South Africa and one of only five Firmicutes-dominated deep fracture fluids identified in the region. Importantly, by combining the metagenomics data and thermodynamic modeling of this study with previously published isotopic and community composition data from the South African subsurface, we are able to demonstrate that Firmicutes-dominated communities are associated with a particular hydrogeologic environment, specifically the older, more saline and more reducing waters.


Assuntos
Bactérias/isolamento & purificação , Carbono/metabolismo , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Metagenômica , Processos Autotróficos , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Carbono/análise , Ciclo do Carbono , Processos Heterotróficos , Metagenoma , Mineração , Filogenia , África do Sul
18.
Front Microbiol ; 5: 531, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25400621

RESUMO

Comparative studies on community phylogenetics and phylogeography of microorganisms living in extreme environments are rare. Terrestrial subsurface habitats are valuable for studying microbial biogeographical patterns due to their isolation and the restricted dispersal mechanisms. Since the taxonomic identity of a microorganism does not always correspond well with its functional role in a particular community, the use of taxonomic assignments or patterns may give limited inference on how microbial functions are affected by historical, geographical and environmental factors. With seven metagenomic libraries generated from fracture water samples collected from five South African mines, this study was carried out to (1) screen for ubiquitous functions or pathways of biogeochemical cycling of CH4, S, and N; (2) to characterize the biodiversity represented by the common functional genes; (3) to investigate the subsurface biogeography as revealed by this subset of genes; and (4) to explore the possibility of using metagenomic data for evolutionary study. The ubiquitous functional genes are NarV, NPD, PAPS reductase, NifH, NifD, NifK, NifE, and NifN genes. Although these eight common functional genes were taxonomically and phylogenetically diverse and distinct from each other, the dissimilarity between samples did not correlate strongly with geographical or environmental parameters or residence time of the water. Por genes homologous to those of Thermodesulfovibrio yellowstonii detected in all metagenomes were deep lineages of Nitrospirae, suggesting that subsurface habitats have preserved ancestral genetic signatures that inform the study of the origin and evolution of prokaryotes.

19.
Genome Announc ; 2(6)2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25414511

RESUMO

Microbial release of greenhouse gases from thawing permafrost is a global concern. Seventy-six metagenomes were generated from low-soil-organic-carbon mineral cryosols from Axel Heiberg Island, Nunavut, Canada, during a controlled thawing experiment. Permafrost thawing resulted in an increase in anaerobic fermenters and sulfate-reducing bacteria but not methanogens.

20.
FEMS Microbiol Ecol ; 87(1): 217-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24102625

RESUMO

The total community genomic DNA (gDNA) from permafrost was extracted using four commercial DNA extraction kits. The gDNAs were compared using quantitative real-time PCR (qPCR) targeting 16S rRNA genes and bacterial diversity analyses obtained via 454 pyrosequencing of the 16S rRNA (V3 region) amplified in single or nested PCR. The FastDNA(®) SPIN (FDS) Kit provided the highest gDNA yields and 16S rRNA gene concentrations, followed by MoBio PowerSoil(®) (PS) and MoBio PowerLyzer™ (PL) kits. The lowest gDNA yields and 16S rRNA gene concentrations were from the Meta-G-Nome™ (MGN) DNA Isolation Kit. Bacterial phyla identified in all DNA extracts were similar to that found in other soils and were dominated by Actinobacteria, Firmicutes, Gemmatimonadetes, Proteobacteria, and Acidobacteria. Weighted UniFrac and statistical analyses indicated that bacterial community compositions derived from FDS, PS, and PL extracts were similar to each other. However, the bacterial community structure from the MGN extracts differed from other kits exhibiting higher proportions of easily lysed ß- and γ-Proteobacteria and lower proportions of Actinobacteria and Methylocystaceae important in carbon cycling. These results indicate that gDNA yields differ between the extraction kits, but reproducible bacterial community structure analysis may be accomplished using gDNAs from the three bead-beating lysis extraction kits.


Assuntos
Bactérias/isolamento & purificação , Reação em Cadeia da Polimerase/métodos , Microbiologia do Solo , Regiões Árticas , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Dados de Sequência Molecular , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Kit de Reagentes para Diagnóstico/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA