Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 4974, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591988

RESUMO

Long Interspersed Nuclear Elements-1s (L1s) are transposable elements that constitute most of the genome's transcriptional output yet have still largely unknown functions. Here we show that L1s are required for proper mouse brain corticogenesis operating as regulatory long non-coding RNAs. They contribute to the regulation of the balance between neuronal progenitors and differentiation, the migration of post-mitotic neurons and the proportions of different cell types. In cortical cultured neurons, L1 RNAs are mainly associated to chromatin and interact with the Polycomb Repressive Complex 2 (PRC2) protein subunits enhancer of Zeste homolog 2 (Ezh2) and suppressor of zeste 12 (Suz12). L1 RNA silencing influences PRC2's ability to bind a portion of its targets and the deposition of tri-methylated histone H3 (H3K27me3) marks. Our results position L1 RNAs as crucial signalling hubs for genome-wide chromatin remodelling, enabling the fine-tuning of gene expression during brain development and evolution.


Assuntos
Elementos Nucleotídeos Longos e Dispersos , RNA Longo não Codificante , Animais , Camundongos , Elementos Nucleotídeos Longos e Dispersos/genética , Diferenciação Celular , Cromatina/genética , Montagem e Desmontagem da Cromatina , RNA Longo não Codificante/genética
2.
PLoS One ; 18(5): e0286070, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37205696

RESUMO

Pollen is the primary source of dietary protein for honey bees. It also includes complex polysaccharides in its outer coat, which are largely indigestible by bees but can be metabolized by bacterial species within the gut microbiota. During periods of reduced availability of floral pollen, supplemental protein sources are frequently provided to managed honey bee colonies. The crude proteins in these supplemental feeds are typically byproducts from food manufacturing processes and are rarely derived from pollen. Our experiments on the impact of different diets showed that a simplified pollen-free diet formulated to resemble the macronutrient profile of a monofloral pollen source resulted in larger microbial communities with reduced diversity, reduced evenness, and reduced levels of potentially beneficial hive-associated bacteria. Furthermore, the pollen-free diet sharply reduced the expression of genes central to honey bee development. In subsequent experiments, we showed that these shifts in gene expression may be linked to colonization by the gut microbiome. Lastly, we demonstrated that for bees inoculated with a defined gut microbiota, those raised on an artificial diet were less able to suppress infection from a bacterial pathogen than those that were fed natural pollen. Our findings demonstrate that a pollen-free diet significantly impacts the gut microbiota and gene expression of honey bees, indicating the importance of natural pollen as a primary protein source.


Assuntos
Microbioma Gastrointestinal , Microbiota , Abelhas/genética , Animais , Microbiota/genética , Microbioma Gastrointestinal/genética , Dieta , Proteínas Alimentares/metabolismo , Bactérias/genética , Bactérias/metabolismo , Expressão Gênica
3.
Int J Mol Sci ; 23(21)2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36361516

RESUMO

With recent rapid advancement of methodological tools, mechanistic understanding of biological processes leading to carcinogenesis is expanding. New approach methodologies such as transcriptomics can inform on non-genotoxic mechanisms of chemical carcinogens and can be developed for regulatory applications. The Organisation for the Economic Cooperation and Development (OECD) expert group developing an Integrated Approach to the Testing and Assessment (IATA) of Non-Genotoxic Carcinogens (NGTxC) is reviewing the possible assays to be integrated therein. In this context, we review the application of transcriptomics approaches suitable for pre-screening gene expression changes associated with phenotypic alterations that underlie the carcinogenic processes for subsequent prioritisation of downstream test methods appropriate to specific key events of non-genotoxic carcinogenesis. Using case studies, we evaluate the potential of gene expression analyses especially in relation to breast cancer, to identify the most relevant approaches that could be utilised as (pre-) screening tools, for example Gene Set Enrichment Analysis (GSEA). We also consider how to address the challenges to integrate gene panels and transcriptomic assays into the IATA, highlighting the pivotal omics markers identified for assay measurement in the IATA key events of inflammation, immune response, mitogenic signalling and cell injury.


Assuntos
Carcinógenos , Transcriptoma , Humanos , Carcinógenos/toxicidade , Bioensaio , Carcinogênese , Testes de Carcinogenicidade/métodos
4.
Philos Trans R Soc Lond B Biol Sci ; 377(1853): 20210510, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35491590

RESUMO

Poor nutrition and landscape changes are regularly cited as key factors causing the decline of wild and managed bee populations. However, what constitutes 'poor nutrition' for bees currently is inadequately defined. Bees collect and eat pollen: it is their only solid food source and it provides a broad suite of required macro- and micronutrients. Bees are also generalist foragers and thus the different pollen types they collect and eat can be highly nutritionally variable. Therefore, characterizing the multidimensional nutrient content of different pollen types is needed to fully understand pollen as a nutritional resource. Unfortunately, the use of different analytical approaches to assess pollen nutrient content has complicated between-studies comparisons and blurred our understanding of pollen nutrient content. In the current study, we start by reviewing the common methods used to estimate protein and lipids found in pollen. Next, using monofloral Brassica and Rosa pollen, we experimentally reveal biases in results using these methods. Finally, we use our collective data to propose a unifying approach for analysing pollen nutrient content. This will help researchers better study and understand the nutritional ecology-including foraging behaviour, nutrient regulation and health-of bees and other pollen feeders. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.


Assuntos
Ecologia , Pólen , Animais , Abelhas , Nutrientes , Pólen/química
5.
Environ Toxicol Chem ; 41(4): 991-1003, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35262221

RESUMO

The risk of honey bee (Apis mellifera L.) exposure to pesticide residues while foraging for nectar and pollen is commonly explored in the context of agroecosystems. However, pesticides are also used in urban and suburban areas for vegetation management, vector control, and the management of ornamental plants in public and private landscapes. The extent to which pesticides pose a health risk to honey bees in these settings remains unclear. We addressed this at a landscape scale by conducting pesticide residue screening analyses on 768 nectar and 862 pollen samples collected monthly over 2 years from honey bee colonies located in urban and suburban areas in eight medium to large cities in California, Florida, Michigan, and Texas (USA). A risk assessment was performed using the US Environmental Protection Agency's BeeREX model whenever an oral toxicity value was available for a compound. Chemical analyses detected 17 pesticides in nectar and 60 in pollen samples during the survey. Approximately 73% of all samples contained no detectable pesticide residues. Although the number of detections varied among the sampled regions, fewer pesticides were detected in nectar than in pollen. Per BeeREX, four insecticides showed a potential acute risk to honey bees: imidacloprid, chlorpyrifos, and esfenvalerate in nectar, and deltamethrin in nectar and pollen. In general, exposure of honey bees to pesticides via nectar and pollen collection was low in urban and suburban areas across the United States, and no seasonal or spatial trends were evident. Our data suggest that honey bees are exposed to fewer pesticides in developed areas than in agricultural ones. Environ Toxicol Chem 2022;41:991-1003. © 2022 SETAC.


Assuntos
Inseticidas , Resíduos de Praguicidas , Praguicidas , Animais , Abelhas , Inseticidas/análise , Resíduos de Praguicidas/análise , Praguicidas/toxicidade , Néctar de Plantas , Pólen/química , Estados Unidos
6.
Int J Mol Sci ; 23(3)2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35163690

RESUMO

Several harmful modifications in different tissues-organs, leading to relevant diseases (e.g., liver and lung diseases, neurodegeneration) are reported after exposure to cadmium (Cd), a wide environmental contaminant. This arises the question whether any common molecular signatures and/or Cd-induced modifications might represent the building block in initiating or contributing to address the cells towards different pathological conditions. To unravel possible mechanisms of Cd tissue-specificity, we have analyzed transcriptomics data from cell models representative of three major Cd targets: pulmonary (A549), hepatic (HepG2), and neuronal (SH-SY-5Y) cells. Further, we compared common features to identify any non-specific molecular signatures. The functional analysis of dysregulated genes (gene ontology and KEGG) shows GO terms related to metabolic processes significantly enriched only in HepG2 cells. GO terms in common in the three cell models are related to metal ions stress response and detoxification processes. Results from KEGG analysis show that only one specific pathway is dysregulated in a significant way in all cell models: the mineral absorption pathway. Our data clearly indicate how the molecular mimicry of Cd and its ability to cause a general metal ions dyshomeostasis represent the initial common feature leading to different molecular signatures and alterations, possibly responsible for different pathological conditions.


Assuntos
Cádmio/toxicidade , Fígado/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Transcriptoma , Células A549 , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Ontologia Genética , Células Hep G2 , Humanos , Fígado/metabolismo , Pulmão/metabolismo , Neurônios/metabolismo , Especificidade de Órgãos , Toxicogenética
7.
PLoS One ; 14(6): e0217294, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31188840

RESUMO

For honey bees (Apis mellifera), colony maintenance and growth are highly dependent on worker foragers obtaining sufficient resources from flowering plants year round. Despite the importance of floral diversity for proper bee nutrition, urban development has drastically altered resource availability and diversity for these important pollinators. Therefore, understanding the floral resources foraged by bees in urbanized areas is key to identifying and promoting plants that enhance colony health in those environments. In this study, we identified the pollen foraged by bees in four developed areas of the U.S., and explored whether there were spatial or temporal differences in the types of floral sources of pollen used by honey bees in these landscapes. To do this, pollen was collected every month for up to one year from colonies located in developed (urban and suburban) sites in California, Texas, Florida, and Michigan, except during months of pollen dearth or winter. Homogenized pollen samples were acetolyzed and identified microscopically to the lowest taxonomic level possible. Once identified, each pollen type was classified into a frequency category based on its overall relative abundance. Species richness and diversity indices were also calculated and compared across states and seasons. We identified up to 64 pollen types belonging to 39 plant families in one season (California). Species richness was highest in CA and lowest in TX, and was highest during spring in every state. In particular, "predominant" and "secondary" pollen types belonged to the families Arecaceae, Sapindaceae, Anacardiaceae, Apiaceae, Asteraceae, Brassicaceae, Fabaceae, Fagaceae, Lythraceae, Myrtaceae, Rhamnaceae, Rosaceae, Rutaceae, Saliaceae, and Ulmaceae. This study will help broaden our understanding of honey bee foraging ecology and nutrition in urban environments, and will help promote the use of plants that serve the dual purpose of providing aesthetic value and nutritious forage for honey bee colonies placed in developed landscapes.


Assuntos
Abelhas/metabolismo , Plantas/metabolismo , Pólen/metabolismo , Animais , California , Clima , Ecologia , Florida , Flores/metabolismo , Michigan , Polinização/fisiologia , Estações do Ano , Texas , Estados Unidos
8.
Transfusion ; 58(7): 1671-1681, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29664127

RESUMO

BACKGROUND: Extracellular nucleic acids circulate in plasma. They are expected to be present in manufactured blood products eligible for transfusion, but little is known about their biological activity on human cells. The aim of this study is to investigate whether cell-free nucleic acids (CFNAs) are present and biologically active in red blood cell units (RBCUs), fresh frozen plasmas, and platelet concentrates. STUDY DESIGN AND METHODS: CFNAs were extracted from RBCUs, fresh frozen plasma, and platelet concentrates. Their nature and structure were analyzed by regular methods of nucleic acid detection/quantification. A normalized polymerase chain reaction combining amplification of a CFNA marker (Alu 115) and amplification of an internal nonhuman DNA control spiked in all samples (phiX 174) was developed to study CFNA release after RBCU storage. The impact of CFNAs on gene regulation was tested by microarray after coculture with peripheral blood mononuclear cells and macrophages. RESULTS: Extracellular double-stranded DNA was present in all blood products, with higher amounts found in cellular suspensions (RBCUs and platelet concentrates). Storage up to 40 days did not influence release from RBCUs, and CFNA amount varied considerably from one unit to another. Microarray experiments showed that exposition of macrophages to CFNA increased the expression of genes involved in the innate immune response including chemokines, chemokine receptors, and receptors of the innate response. CONCLUSION: CFNAs are present in blood products. Immunoregulatory properties of CFNA are shown in vitro, providing new insights on biologically active components of blood products besides those for intended therapeutic use.


Assuntos
Plaquetas/imunologia , Plaquetas/metabolismo , Ácidos Nucleicos Livres/análise , Eritrócitos/imunologia , Eritrócitos/metabolismo , Imunidade Inata/imunologia , Humanos
9.
Toxicol Appl Pharmacol ; 354: 101-114, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29428530

RESUMO

Growing concern suggests that some chemicals exert (developmental) neurotoxicity (DNT and NT) and are linked to the increase in incidence of autism, attention deficit and hyperactivity disorders. The high cost of routine tests for DNT and NT assessment make it difficult to test the high numbers of existing chemicals. Thus, more cost effective neurodevelopmental models are needed. The use of induced pluripotent stem cells (iPSC) in combination with the emerging human 3D tissue culture platforms, present a novel tool to predict and study human toxicity. By combining these technologies, we generated multicellular brain spheroids (BrainSpheres) from human iPSC. The model has previously shown to be reproducible and recapitulates several neurodevelopmental features. Our results indicate, rotenone's toxic potency varies depending on the differentiation status of the cells, showing higher reactive oxygen species (ROS) and higher mitochondrial dysfunction during early than later differentiation stages. Immuno-fluorescence morphology analysis after rotenone exposure indicated dopaminergic-neuron selective toxicity at non-cytotoxic concentrations (1 µM), while astrocytes and other neuronal cell types were affected at (general) cytotoxic concentrations (25 µM). Omics analysis showed changes in key pathways necessary for brain development, indicating rotenone as a developmental neurotoxicant and show a possible link between previously shown effects on neurite outgrowth and presently observed effects on Ca2+ reabsorption, synaptogenesis and PPAR pathway disruption. In conclusion, our BrainSpheres model has shown to be a reproducible and novel tool to study neurotoxicity and developmental neurotoxicity. Results presented here support the idea that rotenone can potentially be a developmental neurotoxicant.


Assuntos
Encéfalo/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Inseticidas/toxicidade , Células-Tronco Neurais/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Síndromes Neurotóxicas/etiologia , Rotenona/toxicidade , Fatores Etários , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/patologia , Relação Dose-Resposta a Droga , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Metabolômica/métodos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/patologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Síndromes Neurotóxicas/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Esferoides Celulares , Fatores de Tempo , Testes de Toxicidade
10.
Brief Bioinform ; 19(2): 254-262, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28049134

RESUMO

Recent discovery of thousands of small and large noncoding RNAs, in parallel to technical improvements enabling scientists to study the transcriptome in much higher depth, has resulted in massive data generation. This burst of information prompts the development of easily accessible resources for storage, retrieval and analysis of raw and processed data, and hundreds of Web-based tools dedicated to these tasks have been made available. However, the increasing number and diversity of bioinformatics tools, each covering a specific and specialized area, as well as their redundancies, represent potential sources of complication for end users. To overcome these issues, we are introducing an easy-to-follow classification of microRNA (miRNA)-related bioinformatics tools for biologists interested in studying this important class of small noncoding RNAs. We also developed our miRNA database miRNA algorithmic network database (miRandb) that is a meta-database, which presents a survey of > 180 Web-based miRNA databases. These include miRNA sequence, discovery, target prediction, target validation, expression and regulation, functions and their roles in diseases, interactions in cellular pathways and networks and deep sequencing. miRandb recapitulates the diverse possibilities and facilitates that access to the different categories of miRNA resources. Researchers can easily select the category of miRNA information and desired organism, in result eligible databases with their features are presented. This database introducing an easy-to-follow classification of available resources that can facilitate selection of appropriate resources for miRNA-related bioinformatics tools. Finally, we described current shortages and future necessities that assist researchers to use these tools easily. Our database is accessible at http://mirandb.ir.


Assuntos
Biologia Computacional/métodos , MicroRNAs/genética , Sistemas On-Line , Software , Bases de Dados Factuais , Humanos
11.
Transfusion ; 57(7): 1787-1800, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28497550

RESUMO

BACKGROUND: Although the risk of transmitting infectious agents by blood transfusion is dramatically reduced after donor selection, leukoreduction, and laboratory testing, some could still be present in donor's blood. A description of metagenomes in blood products eligible for transfusion represents relevant information to evaluate the risk of pathogen transmission by transfusion. STUDY DESIGN AND METHODS: Detection of viruses, bacteria, and fungi genomes was made by high-throughput sequencing (HTS) of 600 manufactured blood products eligible for transfusion: 300 red blood cell (RBC) and 300 fresh-frozen plasma (FFP) units. RESULTS: Anelloviruses and human pegivirus, frequent in the blood of healthy individuals, were found. Human papillomavirus type 27 and Merkel cell polyomavirus, present on the skin, were also detected. Unexpectedly, astrovirus MLB2 was identified and characterized in a FFP unit. The presence of astrovirus MLB2 was confirmed in donor's blood and corresponded to an asymptomatic acute viremia. Sequences of bacteria and fungi were also detected; they are likely the result of environmental contamination. CONCLUSION: This study demonstrates that HTS is a promising tool for detecting common and less frequent infectious pathogens in blood products.


Assuntos
Eritrócitos/microbiologia , Eritrócitos/virologia , Metagenômica/métodos , Plasma/microbiologia , Plasma/virologia , Bancos de Sangue , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mamastrovirus/isolamento & purificação , Análise de Sequência de RNA
13.
J Exp Biol ; 219(Pt 6): 790-6, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26823100

RESUMO

The importance of dietary salt may explain why bees are often observed collecting brackish water, a habit that may expose them to harmful xenobiotics. However, the individual salt preferences of water-collecting bees were not known. We measured the proboscis extension reflex (PER) response of Apis mellifera water foragers to 0-10% w/w solutions of Na, Mg and K, ions that provide essential nutrients. We also tested phosphate, which can deter foraging. Bees exhibited significant preferences, with the most PER responses for 1.5-3% Na and 1.5% Mg. However, K and phosphate were largely aversive and elicited PER responses only for the lowest concentrations, suggesting a way to deter bees from visiting contaminated water. We then analyzed the salt content of water sources that bees collected in urban and semi-urban environments. Bees collected water with a wide range of salt concentrations, but most collected water sources had relatively low salt concentrations, with the exception of seawater and swimming pools, which had >0.6% Na. The high levels of PER responsiveness elicited by 1.5-3% Na may explain why bees are willing to collect such salty water. Interestingly, bees exhibited high individual variation in salt preferences: individual identity accounted for 32% of variation in PER responses. Salt specialization may therefore occur in water foragers.


Assuntos
Abelhas/fisiologia , Água/química , Animais , Comportamento Apetitivo , Comportamento Alimentar , Magnésio , Fosfatos , Potássio , Reflexo , Salinidade , Água do Mar , Sódio
14.
Alzheimers Dement ; 11(11): 1265-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25937274

RESUMO

INTRODUCTION: The cause of sporadic Alzheimer's disease (AD) remains unclear. Given the growing evidence that protein aggregates can spread in a "prion-like" fashion, we reasoned that a small population of brain cells producing such "prion-like" particles due to a postzygotic acquired mutation would be sufficient to trigger the disease. Deep DNA sequencing technology should in principle allow the detection of such mosaics. METHODS: To detect the somatic mutations of genes causing AD present in a small number of cells, we developed a targeted deep sequencing approach to scrutinize the genomic loci of APP, PSEN1, and PSEN2 genes in DNA extracted from the entorhinal cortex, one of the brain regions showing the earliest signs of AD pathology. We also included the analysis of the MAPT gene because mutations may promote tangle formation. We validated candidate mutations with an independent targeted ultradeep amplicon sequencing technique. RESULTS: We demonstrate that our approach can detect single-nucleotide mosaic variants with a 1% allele frequency and copy number mosaic variants present in as few as 10% of cells. We screened 72 AD and 58 control brain samples and identified three mosaic variants with low allelic frequency (∼1%): two novel MAPT variants in sporadic AD patients and a known PSEN2 variant in a Braak II control subject. Moreover, we detected both novel and known pathogenic nonmosaic heterozygous variants in PSEN1 and PSEN2 in this cohort of sporadic AD patients. DISCUSSION: Our results show that mosaic mutations with low allelic frequencies in AD-relevant genes can be detected in brain-derived DNA, but larger samples need to be investigated before a more definitive conclusion with regard to the pathogenicity of such mosaics can be made.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Córtex Entorrinal/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Mosaicismo , Análise de Sequência de DNA/métodos , Idoso , Idoso de 80 Anos ou mais , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Estudos de Coortes , Variações do Número de Cópias de DNA , Frequência do Gene , Humanos , Mutação , Projetos Piloto , Polimorfismo de Nucleotídeo Único , Presenilina-1/genética , Presenilina-1/metabolismo , Presenilina-2/genética , Presenilina-2/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
15.
Neurobiol Dis ; 73: 275-88, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25315682

RESUMO

miR-29 is expressed strongly in the brain and alterations in expression have been linked to several neurological disorders. To further explore the function of this miRNA in the brain, we generated miR-29a/b-1 knockout animals. Knockout mice develop a progressive disorder characterized by locomotor impairment and ataxia. The different members of the miR-29 family are strongly expressed in neurons of the olfactory bulb, the hippocampus and in the Purkinje cells of the cerebellum. Morphological analysis showed that Purkinje cells are smaller and display less dendritic arborisation compared to their wildtype littermates. In addition, a decreased number of parallel fibers form synapses on the Purkinje cells. We identified several mRNAs significantly up-regulated in the absence of the miR-29a/b-1 cluster. At the protein level, however, the voltage-gated potassium channel Kcnc3 (Kv3.3) was significantly up-regulated in the cerebella of the miR-29a/b knockout mice. Dysregulation of KCNC3 expression may contribute to the ataxic phenotype.


Assuntos
Ataxia/metabolismo , Cerebelo/metabolismo , MicroRNAs/metabolismo , Células de Purkinje/metabolismo , Canais de Potássio Shaw/metabolismo , Animais , Comportamento Animal , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora
16.
Dev Cell ; 30(4): 423-36, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-25132384

RESUMO

Radial glial progenitors play pivotal roles in the development and patterning of the spinal cord, and their fate is controlled by Notch signaling. How Notch is shaped to regulate their crucial transition from expansion toward differentiation remains, however, unknown. miR-132 in the developing zebrafish dampens Notch signaling via a cascade involving the transcriptional corepressor Ctbp2 and the Notch suppressor Sirt1. At early embryonic stages, high Ctbp2 levels sustain Notch signaling and radial glial expansion and concomitantly induce miR-132 expression via a double-negative feedback loop involving Rest inhibition. The changing balance in miR-132 and Ctbp2 interaction gradually drives the switch in Notch output and radial glial progenitor fate as part of the larger developmental program involved in the transition from embryonic to larval spinal cord.


Assuntos
Diferenciação Celular , MicroRNAs/metabolismo , Microglia/metabolismo , Células-Tronco Neurais/metabolismo , Receptores Notch/metabolismo , Proteínas Repressoras/metabolismo , Medula Espinal/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Proteínas do Olho , Retroalimentação Fisiológica , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Microglia/citologia , Células-Tronco Neurais/citologia , Receptores Notch/genética , Proteínas Repressoras/genética , Sirtuína 1/genética , Sirtuína 1/metabolismo , Medula Espinal/citologia , Medula Espinal/embriologia , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
17.
Ageing Res Rev ; 17: 43-53, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24607832

RESUMO

Non-coding RNAs, such as microRNAs and long non-coding RNAs, represent the next major step in understanding the complexity of gene regulation and expression. In the past decade, tremendous efforts have been put mainly into identifying microRNAs that are changed in Alzheimer's disease, with the goal to provide biomarkers of the disease and to better characterize molecular pathways that are deregulated concomitantly to the formation of Tau and amyloid aggregates. This review underlines the importance of correctly defining, in a deluge of high-throughput data, which microRNAs are abnormally expressed in Alzheimer's disease patients. Despite a clear lack of consensus on the topic, miR-132 is emerging as a neuronal microRNA being gradually down-regulated during disease and showing important roles in the maintenance of brain integrity. Insight into the biological importance of other classes of non-coding RNAs also rapidly increased over the last years and therefore we discuss the possible implication of long non-coding RNAs in Alzheimer's disease.


Assuntos
Doença de Alzheimer/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Animais , Biomarcadores/sangue , Sobrevivência Celular , Humanos , Neurônios/metabolismo , Proteínas tau/metabolismo
18.
PLoS One ; 9(2): e88217, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24558381

RESUMO

The purpose of this study was to expand our knowledge of small RNAs, which are known to function within protein complexes to modulate the transcriptional output of the cell. Here we describe two previously unrecognized, small RNAs, termed pY RNA1-s1 and pY RNA1-s2 (processed Y RNA1-stem -1 and -2), thereby expanding the list of known small RNAs. pY RNA1-s1 and pY RNA1-s2 were discovered by RNA sequencing and found to be 20-fold more abundant in the retina than in 14 other rat tissues. Retinal expression of pY RNAs is highly conserved, including expression in the human retina, and occurs in all retinal cell layers. Mass spectrometric analysis of pY RNA1-S2 binding proteins in retina indicates that pY RNA1-s2 selectively binds the nuclear matrix protein Matrin 3 (Matr3) and to a lesser degree to hnrpul1 (heterogeneous nuclear ribonucleoprotein U-like protein). In contrast, pY RNA1-s1 does not bind these proteins. Accordingly, the molecular mechanism of action of pY RNA1-s2 is likely be through an action involving Matr3; this 95 kDa protein has two RNA recognition motifs (RRMs) and is implicated in transcription and RNA-editing. The high affinity binding of pY RNA1-s2 to Matr3 is strongly dependent on the sequence of the RNA and both RRMs of Matr3. Related studies also indicate that elements outside of the RRM region contribute to binding specificity and that phosphorylation enhances pY RNA-s2/Matr3 binding. These observations are of significance because they reveal that a previously unrecognized small RNA, pY RNA1-s2, binds selectively to Matr3. Hypothetically, pY RNA1-S2 might act to modulate cellular function through this molecular mechanism. The retinal enrichment of pY RNA1-s2 provides reason to suspect that the pY RNA1-s2/Matr3 interaction could play a role in vision.


Assuntos
Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Pequeno RNA não Traduzido/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Retina/metabolismo , Adulto , Motivos de Aminoácidos , Animais , Sequência de Bases , Bovinos , Galinhas , Feminino , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Humanos , Macaca mulatta , Masculino , Espectrometria de Massas , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fosforilação , Glândula Pineal/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , Ratos Sprague-Dawley , Ovinos , Distribuição Tecidual
19.
Neurology ; 81(24): 2103-6, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24212398

RESUMO

OBJECTIVE: We evaluated microRNAs (miRNAs) as potential biomarkers for Alzheimer disease (AD) by analyzing the expression level of miRNAs in CSF of patients with AD dementia and nonaffected control subjects. METHODS: Using quantitative PCR, we profiled the expression level of 728 miRNAs in CSF of nonaffected control subjects and patients with clinically ascertained AD dementia, and we further compared the expression level of candidate miRNAs in 37 control subjects and 35 patients with AD dementia. RESULTS: The level of hsa-miR-27a-3p in CSF is reduced in patients with dementia due to AD in 2 different cohorts of subjects (cohort 1: p = 0.008; cohort 2: p = 0.015; 2-tailed unpaired Welch t test). Moreover, low levels of hsa-miR-27a-3p were accompanied by high CSF tau levels and low CSF ß-amyloid levels. CONCLUSIONS: Our pilot study highlights hsa-miR-27a-3p as a candidate biomarker for AD and provides the groundwork for further confirmation studies in larger cohorts and in other hospitals.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Regulação da Expressão Gênica , MicroRNAs/antagonistas & inibidores , MicroRNAs/líquido cefalorraquidiano , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/metabolismo , Biomarcadores/líquido cefalorraquidiano , Estudos de Coortes , Feminino , Humanos , Masculino , MicroRNAs/biossíntese , Pessoa de Meia-Idade , Projetos Piloto
20.
EMBO Mol Med ; 5(10): 1613-34, 2013 10.
Artigo em Inglês | MEDLINE | ID: mdl-24014289

RESUMO

An overview of miRNAs altered in Alzheimer's disease (AD) was established by profiling the hippocampus of a cohort of 41 late-onset AD (LOAD) patients and 23 controls, showing deregulation of 35 miRNAs. Profiling of miRNAs in the prefrontal cortex of a second independent cohort of 49 patients grouped by Braak stages revealed 41 deregulated miRNAs. We focused on miR-132-3p which is strongly altered in both brain areas. Downregulation of this miRNA occurs already at Braak stages III and IV, before loss of neuron-specific miRNAs. Next-generation sequencing confirmed a strong decrease of miR-132-3p and of three family-related miRNAs encoded by the same miRNA cluster on chromosome 17. Deregulation of miR-132-3p in AD brain appears to occur mainly in neurons displaying Tau hyper-phosphorylation. We provide evidence that miR-132-3p may contribute to disease progression through aberrant regulation of mRNA targets in the Tau network. The transcription factor (TF) FOXO1a appears to be a key target of miR-132-3p in this pathway.


Assuntos
Doença de Alzheimer/genética , MicroRNAs/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Área Sob a Curva , Encéfalo/metabolismo , Cromossomos Humanos Par 17 , Análise por Conglomerados , Estudos de Coortes , Progressão da Doença , Regulação para Baixo , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Hipocampo/metabolismo , Humanos , Neurônios/metabolismo , Fosforilação , Curva ROC , Índice de Gravidade de Doença , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA