Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Viruses ; 13(4)2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917085

RESUMO

Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection. Using rSHFV-eGFP, we demonstrate that one cricetid rodent cell line and three ape cell lines also fully support SHFV replication, whereas 55 human cell lines, 11 bat cell lines, and three rodent cells do not. Interestingly, some human and other mammalian cell lines apparently resistant to SHFV infection are permissive after transfection with the rSHFV-eGFP cDNA-launch plasmid. To further demonstrate the investigative potential of the infectious clone system, we introduced stop codons into eight viral open reading frames (ORFs). This approach suggested that at least one ORF, ORF 2b', is dispensable for SHFV in vitro replication. Our proof-of-principle experiments indicated that rSHFV-eGFP is a useful tool for illuminating the understudied molecular biology of SHFV.


Assuntos
Arterivirus/genética , DNA Complementar/genética , Proteínas de Fluorescência Verde/genética , Fases de Leitura Aberta , RNA Viral/genética , Recombinação Genética , Replicação Viral/genética , Animais , Arterivirus/fisiologia , Linhagem Celular , Quirópteros , Hominidae , Humanos , Plasmídeos/genética , Estudo de Prova de Conceito , Roedores
2.
Viruses ; 12(12)2020 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327396

RESUMO

We report the discovery and sequence-based molecular characterization of a novel virus, lanama virus (LNMV), in blood samples obtained from two wild vervet monkeys (Chlorocebus pygerythrus), sampled near Lake Nabugabo, Masaka District, Uganda. Sequencing of the complete viral genomes and subsequent phylogenetic analysis identified LNMV as a distinct member of species Kunsagivirus C, in the undercharacterized picornavirid genus Kunsagivirus.


Assuntos
Chlorocebus aethiops/virologia , Doenças dos Macacos/virologia , Infecções por Picornaviridae/veterinária , Picornaviridae/classificação , Animais , Genoma Viral , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
3.
Microorganisms ; 8(10)2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-33007921

RESUMO

From 2010 to 2015, 73 common marmosets (Callithrix jacchus) housed at the Wisconsin National Primate Research Center (WNPRC) were diagnosed postmortem with lymphocytic enterocolitis. We used unbiased deep-sequencing to screen the blood of deceased enterocolitis-positive marmosets for viruses. In five out of eight common marmosets with lymphocytic enterocolitis, we discovered a novel pegivirus not present in ten matched, clinically normal controls. The novel virus, which we named Southwest bike trail virus (SOBV), is most closely related (68% nucleotide identity) to a strain of simian pegivirus A isolated from a three-striped night monkey (Aotus trivirgatus). We screened 146 living WNPRC common marmosets for SOBV, finding an overall prevalence of 34% (50/146). Over four years, 85 of these 146 animals died or were euthanized. Histological examination revealed 27 SOBV-positive marmosets from this cohort had lymphocytic enterocolitis, compared to 42 SOBV-negative marmosets, indicating no association between SOBV and disease in this cohort (p = 0.0798). We also detected SOBV in two of 33 (6%) clinically normal marmosets screened during transfer from the New England Primate Research Center, suggesting SOBV could be exerting confounding influences on comparisons of common marmoset studies from multiple colonies.

4.
Front Microbiol ; 10: 856, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105663

RESUMO

In 2012, the genome of a novel rhabdovirus, Bas-Congo virus (BASV), was discovered in the acute-phase serum of a Congolese patient with presumed viral hemorrhagic fever. In the absence of a replicating virus isolate, fulfilling Koch's postulates to determine whether BASV is indeed a human virus and/or pathogen has been impossible. However, experiments with vesiculoviral particles pseudotyped with Bas-Congo glycoprotein suggested that BASV particles can enter cells from multiple animals, including humans. In 2015, genomes of two related viruses, Ekpoma virus 1 (EKV-1) and Ekpoma virus 2 (EKV-2), were detected in human sera in Nigeria. Isolates could not be obtained. Phylogenetic analyses led to the classification of BASV, EKV-1, and EKV-2 in the same genus, Tibrovirus, together with five biting midge-borne rhabdoviruses [i.e., Beatrice Hill virus (BHV), Bivens Arm virus (BAV), Coastal Plains virus (CPV), Sweetwater Branch virus (SWBV), and Tibrogargan virus (TIBV)] not known to infect humans. Using individual recombinant vesiculoviruses expressing the glycoproteins of all eight known tibroviruses and more than 75 cell lines representing different animal species, we demonstrate that the glycoproteins of all tibroviruses can mediate vesiculovirus particle entry into human, bat, nonhuman primate, cotton rat, boa constrictor, and Asian tiger mosquito cells. Using four of five isolated authentic tibroviruses (i.e., BAV, CPV, SWBV, and TIBV), our experiments indicate that many cell types may be partially resistant to tibrovirus replication after virion cell entry. Consequently, experimental data solely obtained from experiments using tibrovirus surrogate systems (e.g., vesiculoviral pseudotypes, recombinant vesiculoviruses) cannot be used to predict whether BASV, or any other tibrovirus, infects humans.

5.
Emerg Infect Dis ; 24(7): 1128-1238, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29912683

RESUMO

Influenza viruses exist in each host as a collection of genetically diverse variants, which might enhance their adaptive potential. To assess the genetic and functional diversity of highly pathogenic avian influenza A(H5N1) viruses within infected humans, we used deep-sequencing methods to characterize samples obtained from infected patients in northern Vietnam during 2004-2010 on different days after infection, from different anatomic sites, or both. We detected changes in virus genes that affected receptor binding, polymerase activity, or interferon antagonism, suggesting that these factors could play roles in influenza virus adaptation to humans. However, the frequency of most of these mutations remained low in the samples tested, implying that they were not efficiently selected within these hosts. Our data suggest that adaptation of influenza A(H5N1) viruses is probably stepwise and depends on accumulating combinations of mutations that alter function while maintaining fitness.


Assuntos
Variação Genética , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/epidemiologia , Influenza Humana/virologia , Animais , Linhagem Celular , Genes Virais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , História do Século XXI , Humanos , Influenza Humana/história , Tipagem Molecular , Filogenia , Vigilância da População , Vietnã/epidemiologia , Tropismo Viral
6.
Genome Announc ; 5(18)2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28473378

RESUMO

The picornaviral genus Kunsagivirus has a single member, kunsagivirus A, which was discovered in migratory bird feces. We report here the discovery of a novel kunsagivirus in wild yellow baboon (Papio cynocephalus) blood. The genomic sequence of this virus indicates the probable need for the establishment of a second kunsagivirus species.

7.
J Virol ; 91(4)2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974564

RESUMO

Simian arteriviruses are a diverse clade of viruses infecting captive and wild nonhuman primates. We recently reported that Kibale red colobus virus 1 (KRCV-1) causes a mild and self-limiting disease in experimentally infected crab-eating macaques, while simian hemorrhagic fever virus (SHFV) causes lethal viral hemorrhagic fever. Here we characterize how these viruses evolved during replication in cell culture and in experimentally infected macaques. During passage in cell culture, 68 substitutions that were localized in open reading frames (ORFs) likely associated with host cell entry and exit became fixed in the KRCV-1 genome. However, we did not detect any strong signatures of selection during replication in macaques. We uncovered patterns of evolution that were distinct from those observed in surveys of wild red colobus monkeys, suggesting that these species may exert different adaptive challenges for KRCV-1. During SHFV infection, we detected signatures of selection on ORF 5a and on a small subset of sites in the genome. Overall, our data suggest that patterns of evolution differ markedly among simian arteriviruses and among host species. IMPORTANCE: Certain RNA viruses can cross species barriers and cause disease in new hosts. Simian arteriviruses are a diverse group of related viruses that infect captive and wild nonhuman primates, with associated disease severity ranging from apparently asymptomatic infections to severe, viral hemorrhagic fevers. We infected nonhuman primate cell cultures and then crab-eating macaques with either simian hemorrhagic fever virus (SHFV) or Kibale red colobus virus 1 (KRCV-1) and assessed within-host viral evolution. We found that KRCV-1 quickly acquired a large number of substitutions in its genome during replication in cell culture but that evolution in macaques was limited. In contrast, we detected selection focused on SHFV ORFs 5a and 5, which encode putative membrane proteins. These patterns suggest that in addition to diverse pathogenic phenotypes, these viruses may also exhibit distinct patterns of within-host evolution both in vitro and in vivo.


Assuntos
Infecções por Arterivirus/veterinária , Arterivirus/fisiologia , Evolução Biológica , Interações Hospedeiro-Patógeno , Doenças dos Macacos/virologia , Animais , Interações Hospedeiro-Patógeno/genética , Macaca fascicularis , Doenças dos Macacos/genética , Fases de Leitura Aberta , Polimorfismo de Nucleotídeo Único , RNA Viral , Seleção Genética , Internalização do Vírus , Replicação Viral
8.
PLoS Pathog ; 12(12): e1006048, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27926931

RESUMO

Within the first three weeks of human immunodeficiency virus (HIV) infection, virus replication peaks in peripheral blood. Despite the critical, causal role of virus replication in determining transmissibility and kinetics of progression to acquired immune deficiency syndrome (AIDS), there is limited understanding of the conditions required to transform the small localized transmitted founder virus population into a large and heterogeneous systemic infection. Here we show that during the hyperacute "pre-peak" phase of simian immunodeficiency virus (SIV) infection in macaques, high levels of microbial DNA transiently translocate into peripheral blood. This, heretofore unappreciated, hyperacute-phase microbial translocation was accompanied by sustained reduction of lipopolysaccharide (LPS)-specific antibody titer, intestinal permeability, increased abundance of CD4+CCR5+ T cell targets of virus replication, and T cell activation. To test whether increasing gastrointestinal permeability to cause microbial translocation would amplify viremia, we treated two SIV-infected macaque 'elite controllers' with a short-course of dextran sulfate sodium (DSS)-stimulating a transient increase in microbial translocation and a prolonged recrudescent viremia. Altogether, our data implicates translocating microbes as amplifiers of immunodeficiency virus replication that effectively undermine the host's capacity to contain infection.


Assuntos
DNA Viral/sangue , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/patogenicidade , Viremia/virologia , Animais , Progressão da Doença , Feminino , Citometria de Fluxo , Imunofenotipagem , Inflamação/imunologia , Inflamação/virologia , Ativação Linfocitária/imunologia , Macaca fascicularis , Masculino , Reação em Cadeia da Polimerase , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Replicação Viral/imunologia
9.
Cell Host Microbe ; 20(3): 357-367, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27569558

RESUMO

RNA viruses exhibit a variety of genome organization strategies, including multicomponent genomes in which each segment is packaged separately. Although multicomponent genomes are common among viruses infecting plants and fungi, their prevalence among those infecting animals remains unclear. We characterize a multicomponent RNA virus isolated from mosquitoes, designated Guaico Culex virus (GCXV). GCXV belongs to a diverse clade of segmented viruses (Jingmenvirus) related to the prototypically unsegmented Flaviviridae. The GCXV genome comprises five segments, each of which appears to be separately packaged. The smallest segment is not required for replication, and its presence is variable in natural infections. We also describe a variant of Jingmen tick virus, another Jingmenvirus, sequenced from a Ugandan red colobus monkey, thus expanding the host range of this segmented and likely multicomponent virus group. Collectively, this study provides evidence for the existence of multicomponent animal viruses and their potential relevance for animal and human health.


Assuntos
Colobus/virologia , Culicidae/virologia , Vírus de RNA/isolamento & purificação , Vírus de RNA/ultraestrutura , Vírus/isolamento & purificação , Vírus/ultraestrutura , Animais , Microscopia de Fluorescência , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Vírus/classificação , Vírus/genética
11.
J Virol ; 90(15): 6724-6737, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27170760

RESUMO

UNLABELLED: Nonhuman primates (NHPs) are a historically important source of zoonotic viruses and are a gold-standard model for research on many human pathogens. However, with the exception of simian immunodeficiency virus (SIV) (family Retroviridae), the blood-borne viruses harbored by these animals in the wild remain incompletely characterized. Here, we report the discovery and characterization of two novel simian pegiviruses (family Flaviviridae) and two novel simian arteriviruses (family Arteriviridae) in wild African green monkeys from Zambia (malbroucks [Chlorocebus cynosuros]) and South Africa (vervet monkeys [Chlorocebus pygerythrus]). We examine several aspects of infection, including viral load, genetic diversity, evolution, and geographic distribution, as well as host factors such as age, sex, and plasma cytokines. In combination with previous efforts to characterize blood-borne RNA viruses in wild primates across sub-Saharan Africa, these discoveries demonstrate that in addition to SIV, simian pegiviruses and simian arteriviruses are widespread and prevalent among many African cercopithecoid (i.e., Old World) monkeys. IMPORTANCE: Primates are an important source of viruses that infect humans and serve as an important laboratory model of human virus infection. Here, we discover two new viruses in African green monkeys from Zambia and South Africa. In combination with previous virus discovery efforts, this finding suggests that these virus types are widespread among African monkeys. Our analysis suggests that one of these virus types, the simian arteriviruses, may have the potential to jump between different primate species and cause disease. In contrast, the other virus type, the pegiviruses, are thought to reduce the disease caused by human immunodeficiency virus (HIV) in humans. However, we did not observe a similar protective effect in SIV-infected African monkeys coinfected with pegiviruses, possibly because SIV causes little to no disease in these hosts.


Assuntos
Infecções por Arterivirus/epidemiologia , Evolução Biológica , Infecções por Flaviviridae/epidemiologia , Variação Genética , Infecções por Lentivirus/epidemiologia , Carga Viral , África/epidemiologia , Animais , Animais Selvagens , Arterivirus/genética , Arterivirus/patogenicidade , Infecções por Arterivirus/genética , Infecções por Arterivirus/virologia , Flaviviridae/genética , Flaviviridae/patogenicidade , Infecções por Flaviviridae/genética , Infecções por Flaviviridae/virologia , Genoma Viral , Haplorrinos , Humanos , Lentivirus/genética , Lentivirus/patogenicidade , Infecções por Lentivirus/genética , Infecções por Lentivirus/virologia , Filogenia , Prevalência
12.
PLoS One ; 11(3): e0151313, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26963736

RESUMO

Simian hemorrhagic fever (SHF) is an often lethal disease of Asian macaques. Simian hemorrhagic fever virus (SHFV) is one of at least three distinct simian arteriviruses that can cause SHF, but pathogenesis studies using modern methods have been scarce. Even seemingly straightforward studies, such as examining viral tissue and cell tropism in vivo, have been difficult to conduct due to the absence of standardized SHFV-specific reagents. Here we report the establishment of an in situ hybridization assay for the detection of SHFV and distantly related Kibale red colobus virus 1 (KRCV-1) RNA in cell culture. In addition, we detected SHFV RNA in formalin-fixed, paraffin-embedded tissues from an infected rhesus monkey (Macaca mulatta). The assay is easily performed and can clearly distinguish between SHFV and KRCV-1. Thus, if further developed, this assay may be useful during future studies evaluating the mechanisms by which a simian arterivirus with a restricted cell tropism can cause a lethal nonhuman primate disease similar in clinical presentation to human viral hemorrhagic fevers.


Assuntos
Infecções por Arterivirus/veterinária , Arterivirus/genética , Arterivirus/isolamento & purificação , Macaca mulatta/virologia , RNA Viral/genética , Animais , Infecções por Arterivirus/patologia , Infecções por Arterivirus/virologia , Humanos , Hibridização In Situ , RNA Viral/isolamento & purificação
14.
mBio ; 7(1): e02009-15, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26908578

RESUMO

UNLABELLED: Simian hemorrhagic fever (SHF) is a highly lethal disease in captive macaques. Three distinct arteriviruses are known etiological agents of past SHF epizootics, but only one, simian hemorrhagic fever virus (SHFV), has been isolated in cell culture. The natural reservoir(s) of the three viruses have yet to be identified, but African nonhuman primates are suspected. Eleven additional divergent simian arteriviruses have been detected recently in diverse and apparently healthy African cercopithecid monkeys. Here, we report the successful isolation in MARC-145 cell culture of one of these viruses, Kibale red colobus virus 1 (KRCV-1), from serum of a naturally infected red colobus (Procolobus [Piliocolobus] rufomitratus tephrosceles) sampled in Kibale National Park, Uganda. Intramuscular (i.m.) injection of KRCV-1 into four cynomolgus macaques (Macaca fascicularis) resulted in a self-limiting nonlethal disease characterized by depressive behavioral changes, disturbance in coagulation parameters, and liver enzyme elevations. In contrast, i.m. injection of SHFV resulted in typical lethal SHF characterized by mild fever, lethargy, lymphoid depletion, lymphoid and hepatocellular necrosis, low platelet counts, increased liver enzyme concentrations, coagulation abnormalities, and increasing viral loads. As hypothesized based on the genetic and presumed antigenic distance between KRCV-1 and SHFV, all four macaques that had survived KRCV-1 injection died of SHF after subsequent SHFV injection, indicating a lack of protective heterotypic immunity. Our data indicate that SHF is a disease of macaques that in all likelihood can be caused by a number of distinct simian arteriviruses, although with different severity depending on the specific arterivirus involved. Consequently, we recommend that current screening procedures for SHFV in primate-holding facilities be modified to detect all known simian arteriviruses. IMPORTANCE: Outbreaks of simian hemorrhagic fever (SHF) have devastated captive Asian macaque colonies in the past. SHF is caused by at least three viruses of the family Arteriviridae: simian hemorrhagic fever virus (SHFV), simian hemorrhagic encephalitis virus (SHEV), and Pebjah virus (PBJV). Nine additional distant relatives of these three viruses were recently discovered in apparently healthy African nonhuman primates. We hypothesized that all simian arteriviruses are potential causes of SHF. To test this hypothesis, we inoculated cynomolgus macaques with a highly divergent simian arterivirus (Kibale red colobus virus 1 [KRCV-1]) from a wild Ugandan red colobus. Despite being only distantly related to red colobuses, all of the macaques developed disease. In contrast to SHFV-infected animals, KRCV-1-infected animals survived after a mild disease presentation. Our study advances the understanding of an important primate disease. Furthermore, our data indicate a need to include the full diversity of simian arteriviruses in nonhuman primate SHF screening assays.


Assuntos
Infecções por Arterivirus/veterinária , Arterivirus/isolamento & purificação , Arterivirus/patogenicidade , Colobus/virologia , Febres Hemorrágicas Virais/veterinária , Macaca fascicularis/virologia , Doenças dos Macacos/virologia , Animais , Arterivirus/genética , Arterivirus/crescimento & desenvolvimento , Infecções por Arterivirus/imunologia , Infecções por Arterivirus/fisiopatologia , Infecções por Arterivirus/virologia , Linhagem Celular , Febres Hemorrágicas Virais/imunologia , Febres Hemorrágicas Virais/fisiopatologia , Febres Hemorrágicas Virais/virologia , Fígado/química , Fígado/enzimologia , Masculino , Doenças dos Macacos/imunologia , Doenças dos Macacos/fisiopatologia , Uganda , Carga Viral
15.
J Virol ; 90(2): 630-5, 2016 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-26559828

RESUMO

Wild nonhuman primates are immediate sources and long-term reservoirs of human pathogens. However, ethical and technical challenges have hampered the identification of novel blood-borne pathogens in these animals. We recently examined RNA viruses in plasma from wild African monkeys and discovered several novel, highly divergent viruses belonging to the family Arteriviridae. Close relatives of these viruses, including simian hemorrhagic fever virus, have caused sporadic outbreaks of viral hemorrhagic fever in captive macaque monkeys since the 1960s. However, arterivirus infection in wild nonhuman primates had not been described prior to 2011. The arteriviruses recently identified in wild monkeys have high sequence and host species diversity, maintain high viremia, and are prevalent in affected populations. Taken together, these features suggest that the simian arteriviruses may be "preemergent" zoonotic pathogens. If not, this would imply that biological characteristics of RNA viruses thought to facilitate zoonotic transmission may not, by themselves, be sufficient for such transmission to occur.


Assuntos
Infecções por Arterivirus/transmissão , Infecções por Arterivirus/veterinária , Arterivirus/fisiologia , Doenças dos Primatas/transmissão , Doenças dos Primatas/virologia , Zoonoses/transmissão , Zoonoses/virologia , Animais , Arterivirus/genética , Infecções por Arterivirus/virologia , Haplorrinos , Humanos
16.
Arch Virol ; 161(3): 755-68, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26608064

RESUMO

The family Arteriviridae presently includes a single genus Arterivirus. This genus includes four species as the taxonomic homes for equine arteritis virus (EAV), lactate dehydrogenase-elevating virus (LDV), porcine respiratory and reproductive syndrome virus (PRRSV), and simian hemorrhagic fever virus (SHFV), respectively. A revision of this classification is urgently needed to accommodate the recent description of eleven highly divergent simian arteriviruses in diverse African nonhuman primates, one novel arterivirus in an African forest giant pouched rat, and a novel arterivirus in common brushtails in New Zealand. In addition, the current arterivirus nomenclature is not in accordance with the most recent version of the International Code of Virus Classification and Nomenclature. Here we outline an updated, amended, and improved arterivirus taxonomy based on current data. Taxon-specific sequence cut-offs are established relying on a newly established open reading frame 1b phylogeny and pairwise sequence comparison (PASC) of coding-complete arterivirus genomes. As a result, the current genus Arterivirus is replaced by five genera: Equartevirus (for EAV), Rodartevirus (LDV + PRRSV), Simartevirus (SHFV + simian arteriviruses), Nesartevirus (for the arterivirus from forest giant pouched rats), and Dipartevirus (common brushtail arterivirus). The current species Porcine reproductive and respiratory syndrome virus is divided into two species to accommodate the clear divergence of the European and American "types" of PRRSV, both of which now receive virus status. The current species Simian hemorrhagic fever virus is divided into nine species to accommodate the twelve known simian arteriviruses. Non-Latinized binomial species names are introduced to replace all current species names to clearly differentiate them from virus names, which remain largely unchanged.


Assuntos
Arteriviridae/classificação , Arteriviridae/isolamento & purificação , Infecções por Vírus de RNA/veterinária , Arteriviridae/genética , Análise por Conglomerados , Genoma Viral , Fases de Leitura Aberta , Filogenia , RNA Viral/genética , Homologia de Sequência , Terminologia como Assunto
17.
Proc Natl Acad Sci U S A ; 112(44): 13645-50, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483473

RESUMO

Elucidation of maternal immune correlates of protection against congenital cytomegalovirus (CMV) is necessary to inform future vaccine design. Here, we present a novel rhesus macaque model of placental rhesus CMV (rhCMV) transmission and use it to dissect determinants of protection against congenital transmission following primary maternal rhCMV infection. In this model, asymptomatic intrauterine infection was observed following i.v. rhCMV inoculation during the early second trimester in two of three rhCMV-seronegative pregnant females. In contrast, fetal loss or infant CMV-associated sequelae occurred in four rhCMV-seronegative pregnant macaques that were CD4(+) T-cell depleted at the time of inoculation. Animals that received the CD4(+) T-cell-depleting antibody also exhibited higher plasma and amniotic fluid viral loads, dampened virus-specific CD8(+) T-cell responses, and delayed production of autologous neutralizing antibodies compared with immunocompetent monkeys. Thus, maternal CD4(+) T-cell immunity during primary rhCMV infection is important for controlling maternal viremia and inducing protective immune responses that prevent severe CMV-associated fetal disease.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por Citomegalovirus/prevenção & controle , Transmissão Vertical de Doenças Infecciosas , Troca Materno-Fetal , Animais , Anticorpos Antivirais/imunologia , Infecções por Citomegalovirus/congênito , Infecções por Citomegalovirus/transmissão , Modelos Animais de Doenças , Feminino , Macaca mulatta , Gravidez
18.
Sci Transl Med ; 7(305): 305ra144, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26378244

RESUMO

Human pegivirus (HPgV)-formerly known as GB virus C and hepatitis G virus-is a poorly characterized RNA virus that infects about one-sixth of the global human population and is transmitted frequently in the blood supply. We create an animal model of HPgV infection by infecting macaque monkeys with a new simian pegivirus (SPgV) discovered in wild baboons. Using this model, we provide a high-resolution, longitudinal picture of SPgV viremia where the dose, route, and timing of infection are known. We detail the highly variable acute phase of SPgV infection, showing that the viral load trajectory early in infection is dependent on the infecting dose, whereas the chronic-phase viremic set point is not. We also show that SPgV has an extremely low propensity for accumulating sequence variation, with no consensus-level variants detected during the acute phase of infection and an average of only 1.5 variants generated per 100 infection-days. Finally, we show that SPgV RNA is highly concentrated in only two tissues: spleen and bone marrow, with bone marrow likely producing most of the virus detected in plasma. Together, these results reconcile several paradoxical observations from cross-sectional analyses of HPgV in humans and provide an animal model for studying pegivirus biology.


Assuntos
Medula Óssea/virologia , Modelos Animais de Doenças , Infecções por Flaviviridae/complicações , Vírus GB C , Tropismo Viral , Síndrome da Imunodeficiência Adquirida/prevenção & controle , Animais , Medula Óssea/patologia , Evolução Molecular , Feminino , Variação Genética , Infecções por HIV/virologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Funções Verossimilhança , Macaca , Masculino , Papio , Filogenia , RNA Viral/sangue , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Viral , Viremia
19.
J Virol ; 89(15): 8082-7, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25972539

RESUMO

Simian hemorrhagic fever (SHF) is lethal for macaques. Based on clinical presentation and serological diagnosis, all reported SHF outbreaks were thought to be caused by different strains of the same virus, simian hemorrhagic fever virus (SHFV; Arteriviridae). Here we show that the SHF outbreaks in Sukhumi in 1964 and in Alamogordo in 1989 were caused not by SHFV but by two novel divergent arteriviruses. Our results indicate that multiple divergent simian arteriviruses can cause SHF.


Assuntos
Infecções por Arterivirus/veterinária , Arterivirus/isolamento & purificação , Febres Hemorrágicas Virais/veterinária , Macaca/virologia , Doenças dos Primatas/virologia , Sequência de Aminoácidos , Animais , Arterivirus/classificação , Arterivirus/genética , Arterivirus/fisiologia , Infecções por Arterivirus/história , Infecções por Arterivirus/virologia , Evolução Molecular , Febres Hemorrágicas Virais/história , Febres Hemorrágicas Virais/virologia , História do Século XX , Humanos , Dados de Sequência Molecular , Filogenia , Doenças dos Primatas/história , Homologia de Sequência de Aminoácidos , Proteínas Virais/química , Proteínas Virais/genética
20.
Genome Announc ; 3(2)2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25792044

RESUMO

The new rhabdoviral genus Tibrovirus currently has two members, Coastal Plains virus and Tibrogargan virus. Here, we report the coding-complete genome sequence of a putative member of this genus, Bivens Arm virus. A genomic comparison reveals Bivens Arm virus to be closely related to, but distinct from, Tibrogargan virus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA