Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Int J Mol Sci ; 20(12)2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-31207892

RESUMO

AIM: Primary human hepatocytes (PHHs) undergo dedifferentiation upon the two-dimensional (2D) culture, which particularly hinders their utility in long-term in vitro studies. Lipids, as a major class of biomolecules, play crucial roles in cellular energy storage, structure, and signaling. Here, for the first time, we mapped the alterations in the lipid profile of the dedifferentiating PHHs and studied the possible role of lipids in the loss of the phenotype of PHHs. Simultaneously, differentially expressed miRNAs associated with changes in the lipids and fatty acids (FAs) of the dedifferentiating PHHs were investigated. METHODS: PHHs were cultured in monolayer and their phenotype was monitored morphologically, genetically, and biochemically for five days. The lipid and miRNA profile of the PHHs were analyzed by mass spectrometry and Agilent microarray, respectively. In addition, 24 key genes involved in the metabolism of lipids and FAs were investigated by qPCR. RESULTS: The typical morphology of PHHs was lost from day 3 onward. Additionally, ALB and CYP genes were downregulated in the cultured PHHs. Lipidomics revealed a clear increase in the saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) containing lipids, but a decrease in the polyunsaturated fatty acids (PUFA) containing lipids during the dedifferentiation of PHHs. In line with this, FASN, SCD, ELOVL1, ELOVL3, and ELOVL7 were upregulated but ELOVL2 was downregulated in the dedifferentiated PHHs. Furthermore, differentially expressed miRNAs were identified, and the constantly upregulated miR-27a and miR-21, and downregulated miR-30 may have regulated the synthesis, accumulation and secretion of PHH lipids during the dedifferentiation. CONCLUSION: Our results showed major alterations in the molecular lipid species profiles, lipid-metabolizing enzyme expression as wells as miRNA profiles of the PHHs during their prolonged culture, which in concert could play important roles in the PHHs' loss of phenotype. These findings promote the understanding from the dedifferentiation process and could help in developing optimal culture conditions, which better meet the needs of the PHHs and support their original phenotype.


Assuntos
Desdiferenciação Celular , Hepatócitos/citologia , Metabolismo dos Lipídeos , MicroRNAs/genética , Acetiltransferases/genética , Acetiltransferases/metabolismo , Células Cultivadas , Citocromos/genética , Citocromos/metabolismo , Elongases de Ácidos Graxos , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Hepatócitos/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Albumina Sérica Humana/genética , Albumina Sérica Humana/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Regulação para Cima
2.
RNA Biol ; 16(8): 1034-1043, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31035857

RESUMO

The envisioned application of miRNAs as diagnostic or prognostic biomarkers calls for an in-depth understanding of their distribution and variability in different physiological states. While effects with respect to ethnic origin, age, or gender are known, the inter-individual variability of miRNAs across the four seasons remained largely hidden. We sequentially profiled the complete repertoire of blood-borne miRNAs for 25 physiologically normal individuals in spring, summer, fall, and winter (altogether 95 samples) and validated the results on 292 individuals (919 samples collected with the Mitra home sampling device) by RT-qPCR. Principal variance component analysis suggests that the largest variability observed in miRNA expression is due to individual variability and the individuals' gender. But the results also highlight a deviation of miRNA activity in samples collected during spring time. Following adjustment for multiple testing, remarkable differences are observed between spring and fall (77 miRNAs). The two most dys-regulated miRNAs were miR-181c-5p and miR-106b-5p (adjusted p-value of 0.007). Other significant miRNAs include miR-140-3p, miR-21-3p, and let-7c-5p. The dys-regulation was validated by RT-qPCR. Systems biology analysis further provides strong evidence for the immunological origin of the signals: dys-regulated miRNAs are enriched in CD56 cells and belong to various signalling and immune-system-related pathways. Our data suggest that besides known confounding factors such as age and sex, also the season in which a test is conducted might have a considerable influence on the expression of blood-borne miRNAs and subsequently might interfere with diagnosis based on such signatures.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/sangue , Estações do Ano , Adulto , Antígeno CD56/sangue , Feminino , Humanos , Masculino , Análise de Componente Principal
3.
Nucleic Acids Res ; 47(9): 4431-4441, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30937442

RESUMO

The repertoire of small noncoding RNAs (sncRNAs), particularly miRNAs, in animals is considered to be evolutionarily conserved. Studies on sncRNAs are often largely based on homology-based information, relying on genomic sequence similarity and excluding actual expression data. To obtain information on sncRNA expression (including miRNAs, snoRNAs, YRNAs and tRNAs), we performed low-input-volume next-generation sequencing of 500 pg of RNA from 21 animals at two German zoological gardens. Notably, none of the species under investigation were previously annotated in any miRNA reference database. Sequencing was performed on blood cells as they are amongst the most accessible, stable and abundant sources of the different sncRNA classes. We evaluated and compared the composition and nature of sncRNAs across the different species by computational approaches. While the distribution of sncRNAs in the different RNA classes varied significantly, general evolutionary patterns were maintained. In particular, miRNA sequences and expression were found to be even more conserved than previously assumed. To make the results available for other researchers, all data, including expression profiles at the species and family levels, and different tools for viewing, filtering and searching the data are freely available in the online resource ASRA (Animal sncRNA Atlas) at https://www.ccb.uni-saarland.de/asra/.


Assuntos
Animais de Zoológico/genética , Ácidos Nucleicos Livres/genética , Biologia Computacional , Pequeno RNA não Traduzido/genética , Animais , Ácidos Nucleicos Livres/classificação , Genoma/genética , Alemanha , MicroRNAs/genética , RNA Nucleolar Pequeno/genética , Pequeno RNA não Traduzido/classificação , RNA de Transferência/genética
4.
RNA Biol ; 16(1): 93-103, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30567465

RESUMO

The validation of microRNAs (miRNAs) identified by next generation sequencing involves amplification-free and hybridization-based detection of transcripts as criteria for confirming valid miRNAs. Since respective validation is frequently not performed, miRNA repositories likely still contain a substantial fraction of false positive candidates while true miRNAs are not stored in the repositories yet. Especially if downstream analyses are performed with these candidates (e.g. target or pathway prediction), the results may be misleading. In the present study, we evaluated 558 mature miRNAs from miRBase and 1,709 miRNA candidates from next generation sequencing experiments by amplification-free hybridization and investigated their distributions in patients with various disease conditions. Notably, the most significant miRNAs in diseases are often not contained in the miRBase. However, these candidates are evolutionary highly conserved. From the expression patterns, target gene and pathway analyses and evolutionary conservation analyses, we were able to shed light on the complexity of miRNAs in humans. Our data also highlight that a more thorough validation of miRNAs identified by next generation sequencing is required. The results are available in miRCarta ( https://mircarta.cs.uni-saarland.de ).


Assuntos
Regulação da Expressão Gênica , Estudos de Associação Genética , Predisposição Genética para Doença , MicroRNAs/genética , Interferência de RNA , Linhagem Celular , Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Reprodutibilidade dos Testes , Análise de Sequência de RNA
5.
Anal Chem ; 90(20): 11791-11796, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30198258

RESUMO

Circulating miRNAs are favored for biomarker candidates as they can reflect tissue specific miRNA dysregulation in disease contexts. Moreover, they have the additional advantage that they can be monitored in a minimally invasive manner. Blood-borne miRNAs are therefore currently characterized to identify, describe, and validate their potential suitability as biomarkers; however, sampling and as well miRNA detection methods limit these studies in terms of sensitivity but also practicability in clinical, at-home, or low-resource sampling of high-quality circulating RNA samples. We describe here a novel and innovative method of circulating RNA microsampling from minimal volume dried blood samples with direct enrichment for small RNA fractions in combination with ligation free library preparation. We evaluated crucial parameters for efficient library preparation from low RNA inputs of 50 pg for efficient dissection not only of miRNAs but also isomiRs, piRNAs, and lincRNAs. We compared these data to classical microarrays and characterize the technical reproducibility and its sensitivity. We demonstrate and evaluate a method for easy low resource sampling and NGS analysis of circulating RNAs providing a powerful tool for massive cohort and remote patient monitoring.


Assuntos
Teste em Amostras de Sangue Seco , Pequeno RNA não Traduzido/sangue , Pequeno RNA não Traduzido/genética , Análise de Sequência de RNA , Biologia Computacional , Dedos/irrigação sanguínea , Humanos
6.
Sci Rep ; 8(1): 11584, 2018 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-30072748

RESUMO

Breast cancer is a heterogeneous disease with distinct molecular subtypes including the aggressive subtype triple-negative breast cancer (TNBC). We compared blood-borne miRNA signatures of early-stage basal-like (cytokeratin-CK5-positive) TNBC patients to age-matched controls. The miRNAs of TNBC patients were assessed prior to and following platinum-based neoadjuvant chemotherapy (NCT). After an exploratory genome-wide study on 21 cases and 21 controls using microarrays, the identified signatures were verified independently in two laboratories on the same and a new cohort by RT-qPCR. We differentiated the blood of TNBC patients before NCT from controls with 84% sensitivity. The most significant miRNA for this diagnostic classification was miR-126-5p (two tailed t-test p-value of 1.4 × 10-5). Validation confirmed the microarray results for all tested miRNAs. Comparing cancer patients prior to and post NCT highlighted 321 significant miRNAs (among them miR-34a, p-value of 1.2 × 10-23). Our results also suggest that changes in miRNA expression during NCT may have predictive potential to predict pathological complete response (pCR). In conclusion we report that miRNA expression measured from blood facilitates early and minimally-invasive diagnosis of basal-like TNBC. We also demonstrate that NCT has a significant influence on miRNA expression. Finally, we show that blood-borne miRNA profiles monitored over time have potential to predict pCR.


Assuntos
Biomarcadores Tumorais/sangue , MicroRNAs , Terapia Neoadjuvante , RNA Neoplásico/sangue , Neoplasias de Mama Triplo Negativas , Biópsia por Agulha , Detecção Precoce de Câncer , Feminino , Seguimentos , Humanos , Metabolômica , MicroRNAs/genética , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Estudos Prospectivos , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias de Mama Triplo Negativas/sangue , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/terapia
7.
Genomics Proteomics Bioinformatics ; 16(3): 162-171, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29981854

RESUMO

Chronic obstructive pulmonary disease (COPD) significantly increases the risk of developing cancer. Biomarker studies frequently follow a case-control set-up in which patients diagnosed with a disease are compared to controls. Longitudinal cohort studies such as the COPD-centered German COPD and SYstemic consequences-COmorbidities NETwork (COSYCONET) study provide the patient and biomaterial base for discovering predictive molecular markers. We asked whether microRNA (miRNA) profiles in blood collected from COPD patients prior to a tumor diagnosis could support an early diagnosis of tumor development independent of the tumor type. From 2741 participants of COSYCONET diagnosed with COPD, we selected 534 individuals including 33 patients who developed cancer during the follow-up period of 54 months and 501 patients who did not develop cancer, but had similar age, gender and smoking history. Genome-wide miRNA profiles were generated and evaluated using machine learning techniques. For patients developing cancer we identified nine miRNAs with significantly decreased abundance (two-tailed unpaired t-test adjusted for multiple testing P < 0.05), including members of the miR-320 family. The identified miRNAs regulate different cancer-related pathways including the MAPK pathway (P = 2.3 × 10-5). We also observed the impact of confounding factors on the generated miRNA profiles, underlining the value of our matched analysis. For selected miRNAs, qRT-PCR analysis was applied to validate the results. In conclusion, we identified several miRNAs in blood of COPD patients, which could serve as candidates for biomarkers to help identify COPD patients at risk of developing cancer.


Assuntos
Biomarcadores Tumorais/genética , Perfilação da Expressão Gênica , Genoma Humano , MicroRNAs/genética , Neoplasias/diagnóstico , Doença Pulmonar Obstrutiva Crônica/complicações , Idoso , Estudos de Coortes , Feminino , Humanos , Masculino , Neoplasias/etiologia , Neoplasias/genética , Prognóstico
8.
Bioinformatics ; 34(10): 1621-1628, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29281000

RESUMO

Motivation: Although the amount of small non-coding RNA-sequencing data is continuously increasing, it is still unclear to which extent small RNAs are represented in the human genome. Results: In this study we analyzed 303 billion sequencing reads from nearly 25 000 datasets to answer this question. We determined that 0.8% of the human genome are reliably covered by 874 123 regions with an average length of 31 nt. On the basis of these regions, we found that among the known small non-coding RNA classes, microRNAs were the most prevalent. In subsequent steps, we characterized variations of miRNAs and performed a staged validation of 11 877 candidate miRNAs. Of these, many were actually expressed and significantly dysregulated in lung cancer. Selected candidates were finally validated by northern blots. Although isolated miRNAs could still be present in the human genome, our presented set likely contains the largest fraction of human miRNAs. Contact: c.backes@mx.uni-saarland.de or andreas.keller@ccb.uni-saarland.de. Supplementary information: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma Humano , MicroRNAs , Análise de Sequência de DNA , Transcriptoma , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Neoplasias Pulmonares/genética , Polimorfismo de Nucleotídeo Único , Análise de Sequência de RNA
9.
Oncotarget ; 8(49): 84928-84944, 2017 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-29156694

RESUMO

Tumor genetics and escape from immune surveillance concur in the poor prognosis of PDAC. In this study an experimental model was set up to verify whether SMAD4, deleted in about 55% PDAC and associated with poor prognosis, is involved in determining immunosuppression through Exosomes (Exo). Potential mechanisms and mediators underlying SMAD4-dependent immunosuppression were evaluated by studying intracellular calcium (Fluo-4), Exo-miRNAs (microarray) and Exo-proteins (SILAC). Two PDAC cell lines expressing (BxPC3-SMAD4+) or not-expressing (BxPC3) SMAD4 were used to prepare Exo-enriched conditioned media, employed in experiments with blood donors PBMCs. Exo expanded myeloid derived suppressor cells (gMDSC and mMDSC, flow cytometry) and altered intracellular calcium fluxes in an SMAD4 dependent manner. BxPC3-SMAD4+, but mainly BxPC3 Exo, increased calcium fluxes of PBMCs (p = 0.007) and this increased intracellular calcium trafficking characterized mMDSCs. The analysis of de-regulated Exo-miRNAs and transfection experiments revealed hsa-miR-494-3p and has-miR-1260a as potential mediators of SMAD4-associated de-regulated calcium fluxes. Eleven main biological processes were identified by the analysis of SMAD4-associated de-regulated Exo-proteins, including translation, cell adhesion, cell signaling and glycolysis. A reverse Warburg effect was observed by treating PBMCs with PDAC-derived Exo: BxPC3 Exo induced a higher glucose consumption and lactate production than BxPC3-SMAD4+ Exo. CONCLUSION: PDAC-derived Exo from cells with, but mainly from those without SMAD4 expression, create an immunosuppressive myeloid cell background by increasing calcium fluxes and glycolysis through the transfer of SMAD4-related differentially expressed miRNAs and proteins.

10.
Clin Chem ; 63(9): 1476-1488, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28679647

RESUMO

BACKGROUND: Different work flows have been proposed to use miRNAs as blood-borne biomarkers. In particular, the method used for collecting blood from patients can considerably influence the diagnostic results. METHODS: We explored whether dried blood spots (DBSs) facilitate stable miRNA measurements and compared its technical stability with biological variability. First, we tested the stability of DBS samples by generating from 1 person 18 whole-genome-wide miRNA profiles of DBS samples that were exposed to different temperature and humidity conditions. Second, we investigated technical reproducibility by performing 7 replicates of DBS again from 1 person. Third, we investigated DBS samples from 53 patients with lung cancer undergoing different therapies. Across these 3 stages, 108 genome-wide miRNA profiles from DBS were generated and evaluated biostatistically. RESULTS: In the stability analysis, we observed that temperature and humidity had an overall limited influence on the miRNomes (average correlation between the different conditions of 0.993). Usage of a silica gel slightly diminished DBS' technical reproducibility. The 7 technical replicates had an average correlation of 0.996. The correlation with whole-blood PAXGene miRNomes of the same individual was remarkable (correlation of 0.88). Finally, evaluation of the samples from the 53 patients with lung cancer exposed to different therapies showed that the biological variations exceeded the technical variability significantly (P < 0.0001), yielding 51 dysregulated miRNAs. CONCLUSIONS: We present a stable work flow for profiling of whole miRNomes on the basis of samples collected from DBS. Biological variations exceeded technical variations significantly. DBS-based miRNA profiles will potentially further the translational character of miRNA biomarker studies.


Assuntos
Teste em Amostras de Sangue Seco/normas , Neoplasias Pulmonares/diagnóstico , MicroRNAs/análise , Estabilidade de RNA , Biologia Computacional , Humanos , MicroRNAs/química , Reprodutibilidade dos Testes
11.
Clin Biochem ; 50(4-5): 186-193, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27847340

RESUMO

BACKGROUND: Disease-independent sources of biomarker variability include pre-analytical, analytical and biological variance. The aim of the present study was to evaluate whether the pre-analytical phase has any impact on the emerging heart disease TWEAK and HMGB1 protein markers and miRNA biomarkers, and whether peptidome profiling allows the identification of pre-analytical quality markers. METHODS: An assessment was made of sample type (serum, EDTA-Plasma, Citrate-Plasma, ACD-plasma, Heparin-plasma), temperature of sample storage (room temperature or refrigerated), time of sample storage (0.5, 3, 6 and 9h) and centrifugation (one or two-step). Aliquots of all processed samples were immediately frozen (-80°C) before analysis. Proteins were assayed by ELISAs, miRNA expression profile by microarray and peptidome profiling by MALDI-TOF/MS. RESULTS: Temperature, time and centrifugation had no impact on TWEAK and HMGB1 results, which were significantly influenced by matrix type, TWEAK levels being significantly higher (F=194.7, p<0.0001), and HMGB1 levels significantly lower (F=36.32, p<0.0001) in serum than in any other plasma type. Unsuitable miRNA results were obtained using Heparin-plasma. Serum miRNA expression profiles depended mainly on temperature, while EDTA-plasma miRNA expression profiles were strongly affected by the centrifugation method used. MALDI-TOF/MS allowed the identification of seven features as indices of pre-analytical serum (m/z at 1206, 1350, 1865 and 2021) or EDTA-plasma (m/z 1897, 2740 and 2917) degradation. CONCLUSIONS: Serum and EDTA-plasma allow the analysis of both proteins and miRNA emerging biomarkers of heart diseases. Refrigerated storage prevents an altered miRNA expression profile also in cases of a prolonged time-interval between blood drawing and processing.


Assuntos
Doenças Cardiovasculares/sangue , Proteína HMGB1/sangue , MicroRNAs/sangue , Fatores de Necrose Tumoral/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Doenças Cardiovasculares/diagnóstico , Citocina TWEAK , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA