Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36991737

RESUMO

This paper presents a deep learning approach to estimate a projectile trajectory in a GNSS-denied environment. For this purpose, Long-Short-Term-Memories (LSTMs) are trained on projectile fire simulations. The network inputs are the embedded Inertial Measurement Unit (IMU) data, the magnetic field reference, flight parameters specific to the projectile and a time vector. This paper focuses on the influence of LSTM input data pre-processing, i.e., normalization and navigation frame rotation, leading to rescale 3D projectile data over similar variation ranges. In addition, the effect of the sensor error model on the estimation accuracy is analyzed. LSTM estimates are compared to a classical Dead-Reckoning algorithm, and the estimation accuracy is evaluated via multiple error criteria and the position errors at the impact point. Results, presented for a finned projectile, clearly show the Artificial Intelligence (AI) contribution, especially for the projectile position and velocity estimations. Indeed, the LSTM estimation errors are reduced compared to a classical navigation algorithm as well as to GNSS-guided finned projectiles.

2.
Sensors (Basel) ; 15(3): 5293-310, 2015 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-25746095

RESUMO

The location of objects is a growing research topic due, for instance, to the expansion of civil drones or intelligent vehicles. This expansion was made possible through the development of microelectromechanical systems (MEMS), inexpensive and miniaturized inertial sensors. In this context, this article describes the development of a new simulator which generates sensor measurements, giving a specific input trajectory. This will allow the comparison of pose estimation algorithms. To develop this simulator, the measurement equations of every type of sensor have to be analytically determined. To achieve this objective, classical kinematic equations are used for the more common sensors, i.e., accelerometers and rate gyroscopes. As nowadays, the MEMS inertial measurement units (IMUs) are generally magnetometer-augmented, an absolute world magnetic model is implemented. After the determination of the perfect measurement (through the error-free sensor models), realistic error models are developed to simulate real IMU behavior. Finally, the developed simulator is subjected to different validation tests.


Assuntos
Aeronaves/instrumentação , Simulação por Computador , Sistemas Microeletromecânicos , Aceleração , Algoritmos , Fenômenos Biomecânicos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA