Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
3.
Sci Rep ; 14(1): 6154, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486099

RESUMO

Intra-arterial nimodipine administration is a widely used rescue therapy for cerebral vasospasm. Although it is known that its effect sets in with delay, there is little evidence in current literature. Our aim was to prove that the maximal vasodilatory effect is underestimated in direct angiographic controls. We reviewed all cases of intra-arterial nimodipine treatment for subarachnoid hemorrhage-related cerebral vasospasm between January 2021 and December 2022. Inclusion criteria were availability of digital subtraction angiography runs before and after nimodipine administration and a delayed run for the most affected vessel at the end of the procedure to decide on further escalation of therapy. We evaluated nimodipine dose, timing of administration and vessel diameters. Delayed runs were performed in 32 cases (19 patients) with a mean delay of 37.6 (± 16.6) min after nimodipine administration and a mean total nimodipine dose of 4.7 (± 1.2) mg. Vessel dilation was more pronounced in delayed vs. immediate controls, with greater changes in spastic vessel segments (n = 31: 113.5 (± 78.5%) vs. 32.2% (± 27.9%), p < 0.0001) vs. non-spastic vessel segments (n = 32: 23.1% (± 13.5%) vs. 13.3% (± 10.7%), p < 0.0001). In conclusion intra-arterially administered nimodipine seems to exert a delayed vasodilatory effect, which should be considered before escalation of therapy.


Assuntos
Hemorragia Subaracnóidea , Vasoespasmo Intracraniano , Humanos , Nimodipina/farmacologia , Vasodilatadores/uso terapêutico , Vasoespasmo Intracraniano/diagnóstico por imagem , Vasoespasmo Intracraniano/tratamento farmacológico , Hemorragia Subaracnóidea/diagnóstico por imagem , Hemorragia Subaracnóidea/tratamento farmacológico , Angiografia Digital
4.
Interv Neuroradiol ; : 15910199231199131, 2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37671458

RESUMO

OBJECTIVE: The low-profile Acandis Acclino flex plus (AFP) is a fourth-generation laser-cut microstent with a flexible structure designed for the treatment of a wide variety of aneurysms. We report our single-center experience with this device in the treatment of complex aneurysms. METHODS: Twenty-eight patients were treated with the Acclino flex plus for 28 aneurysms. Aneurysm characteristics, technical success, complications, clinical outcome, and angiographic results were retrospectively analyzed. RESULTS: The cohort included 8 unruptured untreated aneurysms, 9 unruptured recurrent aneurysms, and 12 ruptured aneurysms with aneurysm diameters ranging from 3 to 23 mm. The anterior communicating artery was the most common location (52%). Stent deployment was successful in 28 cases (97%) with an average of 1.3 stents per aneurysm. The overall procedural complication rate was 17%, including 2 (6.8%) major clinical events (one ischaemic stroke and one aneurysm perforation) and one (3.4%) minor clinical event (one seizure). Angiographic results of 23 aneurysms at a mean of 6 months were complete occlusion in 74%, neck remnants in 13% and aneurysm remnants in 13%. Three patients were retreated. CONCLUSIONS: Given the complexity of the aneurysms, the use of the Acclino flex plus was feasible and associated with a favourable safety and efficacy profile. Further studies are needed to evaluate Acclino flex plus in other aneurysm subsets and to define its role in endovascular aneurysm treatment.

5.
Eur Radiol ; 33(12): 9286-9295, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37436505

RESUMO

OBJECTIVES: To investigate photon-counting CT (PCCT)-derived virtual monoenergetic images (VMI) for artifact reduction in patients with unilateral total hip replacements (THR). METHODS: Forty-two patients with THR and portal-venous phase PCCT of the abdomen and pelvis were retrospectively included. For the quantitative analysis, region of interest (ROI)-based measurements of hypodense and hyperdense artifacts, as well as of artifact-impaired bone and the urinary bladder, were conducted, and corrected attenuation and image noise were calculated as the difference of attenuation and noise between artifact-impaired and normal tissue. Two radiologists qualitatively evaluated artifact extent, bone assessment, organ assessment, and iliac vessel assessment using 5-point Likert scales. RESULTS: VMI110keV yielded a significant reduction of hypo- and hyperdense artifacts compared to conventional polyenergetic images (CI) and the corrected attenuation closest to 0, indicating best possible artifact reduction (hypodense artifacts: CI: 237.8 ± 71.4 HU, VMI110keV: 8.5 ± 122.5 HU; p < 0.05; hyperdense artifacts: CI: 240.6 ± 40.8 HU vs. VMI110keV: 13.0 ± 110.4 HU; p < 0.05). VMI110keV concordantly provided best artifact reduction in the bone and bladder as well as the lowest corrected image noise. In the qualitative assessment, VMI110keV received the best ratings for artifact extent (CI: 2 (1-3), VMI110keV: 3 (2-4); p < 0.05) and bone assessment (CI: 3 (1-4), VMI110keV: 4 (2-5); p < 0.05), whereas organ and iliac vessel assessments were rated highest in CI and VMI70keV. CONCLUSIONS: PCCT-derived VMI effectively reduce artifacts from THR and thereby improve assessability of circumjacent bone tissue. VMI110keV yielded optimal artifact reduction without overcorrection, yet organ and vessel assessments at that energy level and higher were impaired by loss of contrast. CLINICAL RELEVANCE STATEMENT: PCCT-enabled artifact reduction is a feasible method for improving assessability of the pelvis in patients with total hip replacements at clinical routine imaging. KEY POINTS: • Photon-counting CT-derived virtual monoenergetic images at 110 keV yielded best reduction of hyper- and hypodense artifacts, whereas higher energy levels resulted in artifact overcorrection. • The qualitative artifact extent was reduced best in virtual monoenergetic images at 110 keV, facilitating an improved assessment of the circumjacent bone. • Despite significant artifact reduction, assessment of pelvic organs as well as vessels did not profit from energy levels higher than 70 keV, due to the decline in image contrast.


Assuntos
Artroplastia de Quadril , Humanos , Artefatos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Osso e Ossos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
6.
Acta Radiol ; 64(2): 776-783, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35505585

RESUMO

BACKGROUND: Prior studies focused on utilization of dual-energy computed tomography (DECT) to better detect intracranial pathology and to reduce artifacts. It is still unclear whether virtual non-contrast (VNC) images of DECT can replace true non-contrast (TNC) images. PURPOSE: To compare attenuation values and image quality of VNC images to TNC images of the brain, obtained using spectral detector CT (SDCT). MATERIAL AND METHODS: We retrospectively evaluated patients that underwent head CT with and without contrast material, on a SDCT scanner at our institution (n = 33). The attenuation values of different brain structures were obtained from TNC images, the conventional images of the post-contrast exams (n = 16) or the CT angiography (CTA) (n = 17), and the derived VNC images. In total, 591 regions of interest were obtained, including white and gray matter. Two neuroradiologists independently evaluated the image quality of the VNC and TNC images, using a 5-point Likert scale. RESULTS: The mean difference between the attenuation values on the VNC versus the TNC images was <4 HU for almost all the structures. The difference reached statistical significance (P < 0.05) for the deep gray structures but not for the white matter. The image quality score of the TNC images was 5 in all the patients (excellent gray-white matter differentiation). The scores of the VNC images differed between post-contrast and CTA examinations, with means of 4.9 ± 0.3 (excellent) and 3.2 ± 0.4 (fair), respectively (P < 0.001). CONCLUSION: Our results show minor differences between attenuation values of different brain structures on VNC versus TNC images of SDCT.


Assuntos
Angiografia por Tomografia Computadorizada , Tomografia Computadorizada por Raios X , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Angiografia por Tomografia Computadorizada/métodos , Encéfalo/diagnóstico por imagem , Substância Cinzenta
7.
Abdom Radiol (NY) ; 48(1): 424-435, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36180598

RESUMO

PURPOSE: To assess image quality and metal artifact reduction in split-filter dual-energy CT (sfDECT) of the abdomen with hip or spinal implants using virtual monoenergetic images (VMI) and iterative metal artifact reduction algorithm (iMAR). METHODS: 102 portal-venous abdominal sfDECTs of patients with hip (n = 71) or spinal implants (n = 31) were included in this study. Images were reconstructed as 120kVp-equivalent images (Mixed) and VMI (40-190 keV), with and without iMAR. Quantitative artifact and image noise was measured using 12 different ROIs. Subjective image quality was rated by two readers using a five-point Likert-scale in six categories, including overall image quality and vascular contrast. RESULTS: Lowest quantitative artifact in both hip and spinal implants was measured in VMI190keV-iMAR. However, it was not significantly lower than in MixediMAR (for all ROIs, p = 1.00), which were rated best for overall image quality (hip: 1.00 [IQR: 1.00-2.00], spine: 3.00 [IQR:2.00-3.00]). VMI50keV-iMAR was rated best for vascular contrast (hip: 1.00 [IQR: 1.00-2.00], spine: 2.00 [IQR: 1.00-2.00]), which was significantly better than Mixed (both, p < 0.001). VMI50keV-iMAR provided superior overall image quality compared to Mixed for hip (1.00 vs 2.00, p < 0.001) and similar diagnostic image quality for spinal implants (2.00 vs 2.00, p = 0.51). CONCLUSION: For abdominal sfDECT with hip or spinal implants MixediMAR images should be used. High keV VMI do not further improve image quality. IMAR allows the use of low keV images (VMI50keV) to improve vascular contrast, compared to Mixed images.


Assuntos
Artefatos , Tomografia Computadorizada por Raios X , Humanos , Tomografia Computadorizada por Raios X/métodos , Metais , Próteses e Implantes , Algoritmos , Abdome
8.
J Neurol ; 270(1): 503-510, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36180649

RESUMO

BACKGROUND: Magnetic resonance imaging (MRI) is currently explored as supplemental tool to monitor disease progression and treatment response in various neuromuscular disorders. We here assessed the utility of a multi-parametric magnetic resonance imaging (MRI) protocol including quantitative water T2 mapping, Dixon-based proton density fat fraction (PDFF) estimation and diffusion tensor imaging (DTI) to detect loss of spinal motor neurons and subsequent muscle damage in adult SMA patients. METHODS: Sixteen SMA patients and 13 age-matched controls were enrolled in this prospective, longitudinal study. All participants underwent MRI imaging including measurements of Dixon-based PDFF and DTI of the sciatic nerve. SMA patients furthermore underwent measurements of muscle water T2 (T2w) of the biceps femoris muscle (BFM) and quadriceps femoris muscle (QFM). Ten participants returned for a second scan six months later. MRI parameter were correlated with clinical data. All patients were on nusinersen treatment. RESULTS: There were significantly higher intramuscular fat fractions in the BFM and QFM of SMA patients compared to healthy controls at baseline and after 6 months. Furthermore, T2 values significantly correlated positively with intramuscular fat fractions. The Hammersmith functional motor scale significantly correlated with the QFM's intramuscular fat fractions. DTI scans of the sciatic nerve were not significantly different between the two groups. CONCLUSION: This study demonstrates that, water T2 mapping and Dixon-based PDFF estimation may distinguish between adult SMA patients and controls, due to massive intramuscular fat accumulation in SMA. More extensive long-term studies are warranted to further evaluate these two modalities as surrogate markers in SMA patients during treatment.


Assuntos
Imagem de Tensor de Difusão , Imageamento por Ressonância Magnética , Adulto , Humanos , Estudos Longitudinais , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Neurônios Motores , Água
9.
Eur J Radiol ; 157: 110583, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36371948

RESUMO

PURPOSE: To assess the diagnostic value of spectral-detector CT (SDCT) derived virtual non-contrast images (VNC) for differentiation between vascular enhancement and wall calcifications of cystic intracranial tumors in contrast-enhanced stereotactic planning examinations. METHOD: 48 patients with cystic intracranial tumors who underwent stereotactic SDCT examinations between 02/2017 and 02/2020 were retrospectively included. In each patient, two separate hyperattenuating structures along the cyst wall were defined as either enhancement or calcification, respectively, using reference MRI examinations. Quantitative analysis was performed ROI-based in conventional images (CI) and VNC. In the subjective analysis, two radiologists diagnosed the predefined peri-cystic structures in binary decisions as either enhancement or calcification using CI and the combination of CI and VNC, and rated diagnostic confidence, image noise and removal of iodine in VNC. Moreover, a potential diagnostic benefit of VNC was indicated. RESULTS: Attenuation in CI was higher as compared to VNC across all assessed ROI (all p < 0.01). In VNC, CNR between calcification and white matter was significantly higher as compared to CNR between vascular enhancement and white matter (2.6 vs 1.3, p < 0.01), while there was no significant difference in CI. In the qualitative assessment, diagnostic accuracy was significantly higher using both VNC and CI compared to using CI alone. Raters reported less image noise in VNC as compared to CI. An additional diagnostic benefit of VNC was indicated in 84.4 % of all cases. CONCLUSIONS: SDCT-derived VNC images facilitate differentiation between peri-cystic contrast enhancement in blood vessels and calcifications in stereotactic planning scans of cystic intracranial tumors.


Assuntos
Neoplasias Encefálicas , Calcinose , Iodo , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Calcinose/diagnóstico por imagem , Neoplasias Encefálicas/diagnóstico por imagem
10.
Diagnostics (Basel) ; 12(10)2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36292183

RESUMO

Purpose: To investigate if quantitative contrast enhancement and iodine mapping of common brain tumor (BT) entities may correctly differentiate between tumor etiologies in standardized stereotactic CT protocols. Material and Methods: A retrospective monocentric study of 139 consecutive standardized dual-layer dual-energy CT (dlDECT) scans conducted prior to the stereotactic needle biopsy of untreated primary brain tumor lesions. Attenuation of contrast-enhancing BT was derived from polyenergetic images as well as spectral iodine density maps (IDM) and their contrast-to-noise-ratios (CNR) were determined using ROI measures in contrast-enhancing BT and healthy contralateral white matter. The measures were correlated to histopathology regarding tumor entity, isocitrate dehydrogenase (IDH) and MGMT mutation status. Results: The cohort included 52 female and 76 male patients, mean age of 59.4 (±17.1) years. Brain lymphomas showed the highest attenuation (IDM CNR 3.28 ± 1,23), significantly higher than glioblastoma (2.37 ± 1.55, p < 0.005) and metastases (1.95 ± 1.14, p < 0.02), while the differences between glioblastomas and metastases were not significant. These strongly enhancing lesions differed from oligodendroglioma and astrocytoma (Grade II and III) that showed IDM CNR in the range of 1.22−1.27 (±0.45−0.82). Conventional attenuation measurements in DLCT data performed equally or slightly superior to iodine density measurements. Conclusion: Quantitative attenuation and iodine density measurements of contrast-enhancing brain tumors are feasible imaging biomarkers for the discrimination of cerebral tumor lesions but not specifically for single tumor entities. CNR based on simple HU measurements performed equally or slightly superior to iodine quantification.

11.
Quant Imaging Med Surg ; 12(7): 3640-3654, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35782261

RESUMO

Background: In stroke magnetic resonance imaging (MRI), contrast-enhanced magnetic resonance angiography (CE-MRA) is the clinical standard to depict extracranial arteries but native MRA techniques are of increased interest to facilitate clinical practice. The purpose of this study was to assess the detection of extracranial internal carotid artery (ICA) stenosis and plaques as well as the image quality of cervical carotid arteries between a novel flow-independent relaxation-enhanced angiography without contrast and triggering (REACT) sequence and CE-MRA in acute ischemic stroke (AIS). Methods: In this retrospective, single-center study, 105 consecutive patients (65.27±18.74 years, 63 males) were included, who received a standard stroke protocol at 3T in clinical routine including Compressed SENSE (CS) accelerated (factor 4) 3D isotropic REACT (fixed scan time: 02:46 min) and CS accelerated (factor 6) 3D isotropic CE-MRA. Three radiologists independently assessed scans for the presence of extracranial ICA stenosis and plaques (including hyper-/hypointense signal) with concomitant diagnostic confidence using 3-point scales (3= excellent). Vessel quality, artifacts, and image noise of extracranial carotid arteries were subjectively scored on 5-point scales (5= excellent/none). Wilcoxon tests were used for statistical comparison. Results: Considering CE-MRA as the standard of reference, REACT provided a sensitivity of 89.8% and specificity of 95.2% for any and of 93.5% and 95.8% for clinically relevant (≥50%) extracranial ICA stenosis and yielded a to CE-MRA comparable diagnostic confidence [mean ± standard deviation (SD), median (interquartile range): 2.8±0.5, 3 (3-3) vs. 2.7±0.5, 3 (2-3), P=0.03]. Using REACT, readers detected more plaques overall (n=57.3 vs. 47.7, P<0.001) and plaques of hyperintense signal (n=12.3 vs. 5.7, P=0.02) with higher diagnostic confidence [2.8±0.5, 3 (3-3) vs. 2.6±0.7, 3 (2-3), P<0.001] than CE-MRA. After analyzing a total of 1,260 segments, the vessel quality of all segments combined [4.61±0.66 vs. 4.58±0.68, 5 (4-5) vs. 5 (4-5), P=0.0299] and artifacts [4.51±0.70 vs. 4.44±0.73, 5 (4-5) vs. 5 (4-5), P>0.05] were comparable between the sequences with REACT showing a lower image noise [4.43±0.67 vs. 4.25±0.71, 5 (4-5) vs. 4 (4-5), P<0.001]. Conclusions: Without the use of gadolinium-based contrast agents or triggering, REACT provides a high sensitivity and specificity for extracranial ICA stenosis and a potential improved depiction of adjacent plaques while yielding to CE-MRA comparable vessel quality in a large patient cohort with AIS.

12.
J Comput Assist Tomogr ; 46(5): 735-741, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35723620

RESUMO

PURPOSE: Preimplantation cardiac computed tomography (CT) for assessment of the left atrial appendage (LAA) enables correct sizing of the device and the detection of contraindications, such as thrombi. In the arterial phase, distinction between false filling defects and true thrombi can be hampered by insufficient contrast medium distribution. A delayed scan can be used to further differentiate both conditions, but contrast in these acquisitions is relatively lower. In this study, we investigated whether virtual monoenergetic images (VMI) from dual-energy spectral detector CT (SDCT) can be used to enhance contrast and visualization in the delayed phase. MATERIALS AND METHODS: Forty-nine patients receiving SDCT imaging of the LAA were retrospectively enrolled. The imaging protocol comprised dual-phase acquisitions with single-bolus contrast injection. Conventional images (CI) from both phases and 40-keV VMI from the delayed phase were reconstructed. Attenuation, signal-, and contrast-to-noise ratios (SNR/CNR) were calculated by placing regions-of-interest in the LAA, left atrium, and muscular portion of interventricular septum. Two radiologists subjectively evaluated conspicuity and homogeneity of contrast distribution within the LAA. RESULTS: Contrast of the LAA decreased significantly in the delayed phase but was significantly improved by VMI, showing comparable attenuation, SNR, and CNR to CI from the arterial phase (attenuation/SNR/CNR, CI arterial phase: 266.0 ± 117.0 HU/14.2 ± 7.2/6.6 ± 3.9; CI-delayed phase: 107.6 ± 35.0 HU/5.9 ± 3.0/1.0 ± 1.0; VMI delayed phase: 260.3 ± 108.6 HU/18.2 ± 10.6/4.8 ± 3.4). The subjective reading confirmed the objective findings showing improved conspicuity and homogeneity in the delayed phase. CONCLUSIONS: The investigated single-bolus dual-phase acquisition protocol provided improved visualization of the LAA. Homogeneity of contrast media was higher in the delayed phase, while VMI maintained high contrast.


Assuntos
Apêndice Atrial , Imagem Radiográfica a Partir de Emissão de Duplo Fóton , Apêndice Atrial/diagnóstico por imagem , Humanos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Estudos Retrospectivos , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X/métodos
13.
Diagnostics (Basel) ; 11(12)2021 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-34943613

RESUMO

The present study evaluates the diagnostic reliability of virtual non-contrast (VNC) images acquired with the first photon counting CT scanner that is approved for clinical use by comparing quantitative image properties of VNC and true non-contrast (TNC) images. Seventy-two patients were retrospectively enrolled in this study. VNC images reconstructed from the arterial (VNCa) and the portalvenous (VNCv) phase were compared to TNC images. In addition, consistency between VNCa and VNCv images was evaluated. Regions of interest (ROI) were drawn in the following areas: liver, spleen, kidney, aorta, muscle, fat and bone. Comparison of VNCa and VNCv images revealed a mean offset of less than 4 HU in all tissues. The greatest difference between TNC and VNC images was found in spongious bone (VNCv 86.13 HU ± 28.44, p < 0.001). Excluding measurements in spongious bone, differences between TNC and VNCv of 10 HU or less were found in 40% (VNCa 36%) and differences of 15 HU or less were found in 72% (VNCa 68%) of all measurements. The underlying algorithm for the subtraction of iodine works in principle but requires adjustments. Until then, special caution should be exercised when using VNC images in routine clinical practice.

14.
World Neurosurg ; 154: e665-e670, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34343686

RESUMO

BACKGROUND: Meningioma is the most common primary brain tumor in adults. In recent years, several non-neurofibromin 2 mutations, i.e., AKT1, SMO, TRAF7, and KLF4 mutations, specific for meningioma have been identified. This study aims to analyze the clinical impact and imaging characteristics of the KLF4K409Q mutation in meningioma. METHODS: Clinical, neuropathologic, and imaging data of 170 patients who underwent meningioma resection between 2013 and 2018 were retrospectively collected and tumors were analyzed for the presence of the KLF4K409Q mutation. We collected imaging characteristics, performed volumetric analysis of tumor size and peritumoral edema (PTBE), and calculated the edema index (EI, i.e., ratio of PTBE to tumor volume). Receiver operating characteristic curve analysis was performed to identify cut-off EI values to predict the mutational status of KLF4. RESULTS: Eighteen (10.6%) of the meningiomas carried the KLF4K409Q mutation; these were significantly associated with a secretory subtype (P < 0.001) and sphenoid wing location (P = 0.029). Smaller tumor size (P = 0.007), an increased PTBE (P = 0.012), and an increased EI (P = 0.001) proved to be significantly associated with the KLF4K409Q mutation. In receiver operating characteristic curve analysis, EI predicted the KLF4K409Q mutation with an area under the curve of 0.728 (P = 0.0016). CONCLUSIONS: The KLF4K409Q mutation is associated with a distinct small tumor subtype, prone to substantial PTBE. EI is a reliable parameter to predict the KLF4K409Q mutation in meningioma, thus providing a tool for improvement of pre- and perioperative medical management.


Assuntos
Neoplasias Meníngeas/diagnóstico por imagem , Neoplasias Meníngeas/genética , Meningioma/diagnóstico por imagem , Meningioma/genética , Feminino , Humanos , Fator 4 Semelhante a Kruppel/genética , Imageamento por Ressonância Magnética , Masculino , Neoplasias Meníngeas/patologia , Meningioma/patologia , Pessoa de Meia-Idade , Mutação , Estudos Retrospectivos
15.
Quant Imaging Med Surg ; 11(8): 3408-3417, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34341719

RESUMO

BACKGROUND: Increased vessel contrast in low-keV virtual monoenergetic images (VMI) in spectral detector CT angiography of the head and neck requires adaption of window settings. Aim of this study was to define generally applicable window settings of low-keV VMI. METHODS: Two radiologists determined ideal subjective window settings for VMI40-70 keV in 54 patients. To obtain generally applicable window settings, center and width values were modeled against the attenuation of the internal carotid artery (HUICA). This modeling was performed with and without respect to keV. Subsequently, image quality of VMI40-70 keV was assessed using the model-based determined window settings. RESULTS: With decreasing keV values, HUICA increased significantly in comparison to conventional images (CI) (P<0.05 for 40-60 keV). No significant differences between modelled and individually recorded window settings were found confirming validity of the obtained models (P values: 0.2-1.0). However, modelling with respect to keV was marginally less precise. CONCLUSIONS: Window settings of low-keV VMI can be semi-automatically determined in dependency of the ICA attenuation in spectral detector CTA of the head and neck. The reported models are a promising tool to leverage the improved image quality of these images in clinical routine.

16.
Diagnostics (Basel) ; 11(6)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206103

RESUMO

BACKGROUND: in magnetic resonance imaging (MRI), automated detection of brain metastases with convolutional neural networks (CNN) represents an extraordinary challenge due to small lesions sometimes posing as brain vessels as well as other confounders. Literature reporting high false positive rates when using conventional contrast enhanced (CE) T1 sequences questions their usefulness in clinical routine. CE black blood (BB) sequences may overcome these limitations by suppressing contrast-enhanced structures, thus facilitating lesion detection. This study compared CNN performance in conventional CE T1 and BB sequences and tested for objective improvement of brain lesion detection. METHODS: we included a subgroup of 127 consecutive patients, receiving both CE T1 and BB sequences, referred for MRI concerning metastatic spread to the brain. A pretrained CNN was retrained with a customized monolayer classifier using either T1 or BB scans of brain lesions. RESULTS: CE T1 imaging-based training resulted in an internal validation accuracy of 85.5% vs. 92.3% in BB imaging (p < 0.01). In holdout validation analysis, T1 image-based prediction presented poor specificity and sensitivity with an AUC of 0.53 compared to 0.87 in BB-imaging-based prediction. CONCLUSIONS: detection of brain lesions with CNN, BB-MRI imaging represents a highly effective input type when compared to conventional CE T1-MRI imaging. Use of BB-MRI can overcome the current limitations for automated brain lesion detection and the objectively excellent performance of our CNN suggests routine usage of BB sequences for radiological analysis.

17.
J Clin Neurosci ; 89: 343-348, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34119291

RESUMO

OBJECTIVE: Aneurysmal subarachnoid hemorrhage (aSAH) is associated with high morbidity. The objective was to evaluate, whether specific morphological aneurysm characteristics could serve as predictive values for aSAH severity, disease-related complications and clinical outcome. METHODS: A total of 453 aSAH patients (mean age: 54.9 ±â€¯13.8 years, mean aneurysm size: 7.5 ±â€¯3.6 mm) treated at a single center were retrospectively included. A morphometric analysis was performed based on angiographic image sets, determining aneurysm location, aneurysm size, neck width, aneurysm size ratios, aneurysm morphology and vessel size. The following outcome measures were defined: World Federation of Neurosurgical Societies (WFNS) grade 4 and 5, Fisher grade 4, vasospasm, cerebral infarction and unfavorable functional outcome. RESULTS: Regarding morphology parameters, aneurysm neck width was an independent predictor for Fisher 4 hemorrhage (OR: 1.1, 95%CI: 1.0-1.3, p = 0.048), while dome width (OR: 0.92, 95%CI: 0.86-0.97, p = 0.005) and internal carotid artery location (OR: 2.1, 95%CI: 1.1-4.2, p = 0.028) predicted vasospasm. None of the analyzed morphological characteristics prognosticated functional outcome. Patient age (OR: 0.95, 95%CI: 0.93-0.96, p < 0.001), WFNS score (OR: 4.8, 95%CI: 2.9-8.0, p < 0.001), Fisher score (OR: 2.3, 95%CI: 1.4-3.7, p < 0.001) and cerebral infarction (OR: 4.5, 95%CI: 2.7-7.8, p < 0.001) were independently associated with unfavorable outcome. CONCLUSIONS: The findings indicate a correlation between aneurysm morphology, Fisher grade and vasospasm. Further studies will be required to reveal an independent association of aneurysm morphology with cerebral infarction and functional outcome.


Assuntos
Infarto Cerebral/patologia , Aneurisma Intracraniano/patologia , Hemorragia Subaracnóidea/patologia , Adulto , Idoso , Infarto Cerebral/epidemiologia , Infarto Cerebral/terapia , Humanos , Aneurisma Intracraniano/epidemiologia , Aneurisma Intracraniano/terapia , Masculino , Pessoa de Meia-Idade , Hemorragia Subaracnóidea/epidemiologia , Hemorragia Subaracnóidea/terapia , Resultado do Tratamento
18.
J Magn Reson Imaging ; 54(5): 1608-1622, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34032344

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is the most common tumor entity spreading to the brain and up to 50% of patients develop brain metastases (BMs). Detection of BMs on MRI is challenging with an inherent risk of missed diagnosis. PURPOSE: To train and evaluate a deep learning model (DLM) for fully automated detection and 3D segmentation of BMs in NSCLC on clinical routine MRI. STUDY TYPE: Retrospective. POPULATION: Ninety-eight NSCLC patients with 315 BMs on pretreatment MRI, divided into training (66 patients, 248 BMs) and independent test (17 patients, 67 BMs) and control (15 patients, 0 BMs) cohorts. FIELD STRENGTH/SEQUENCE: T1 -/T2 -weighted, T1 -weighted contrast-enhanced (T1 CE; gradient-echo and spin-echo sequences), and FLAIR at 1.0, 1.5, and 3.0 T from various vendors and study centers. ASSESSMENT: A 3D convolutional neural network (DeepMedic) was trained on the training cohort using 5-fold cross-validation and evaluated on the independent test and control sets. Three-dimensional voxel-wise manual segmentations of BMs by a neurosurgeon and a radiologist on T1 CE served as the reference standard. STATISTICAL TESTS: Sensitivity (recall) and false positive (FP) findings per scan, dice similarity coefficient (DSC) to compare the spatial overlap between manual and automated segmentations, Pearson's correlation coefficient (r) to evaluate the relationship between quantitative volumetric measurements of segmentations, and Wilcoxon rank-sum test to compare the volumes of BMs. A P value <0.05 was considered statistically significant. RESULTS: In the test set, the DLM detected 57 of the 67 BMs (mean volume: 0.99 ± 4.24 cm3 ), resulting in a sensitivity of 85.1%, while FP findings of 1.5 per scan were observed. Missed BMs had a significantly smaller volume (0.05 ± 0.04 cm3 ) than detected BMs (0.96 ± 2.4 cm3 ). Compared with the reference standard, automated segmentations achieved a median DSC of 0.72 and a good volumetric correlation (r = 0.95). In the control set, 1.8 FPs/scan were observed. DATA CONCLUSION: Deep learning provided a high detection sensitivity and good segmentation performance for BMs in NSCLC on heterogeneous scanner data while yielding a low number of FP findings. Level of Evidence 3 Technical Efficacy Stage 2.


Assuntos
Neoplasias Encefálicas , Carcinoma Pulmonar de Células não Pequenas , Aprendizado Profundo , Neoplasias Pulmonares , Neoplasias Encefálicas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Estudos Retrospectivos
19.
Neuroradiology ; 63(12): 1985-1994, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33837806

RESUMO

PURPOSE: To evaluate whether a deep learning model (DLM) could increase the detection sensitivity of radiologists for intracranial aneurysms on CT angiography (CTA) in aneurysmal subarachnoid hemorrhage (aSAH). METHODS: Three different DLMs were trained on CTA datasets of 68 aSAH patients with 79 aneurysms with their outputs being combined applying ensemble learning (DLM-Ens). The DLM-Ens was evaluated on an independent test set of 104 aSAH patients with 126 aneuryms (mean volume 129.2 ± 185.4 mm3, 13.0% at the posterior circulation), which were determined by two radiologists and one neurosurgeon in consensus using CTA and digital subtraction angiography scans. CTA scans of the test set were then presented to three blinded radiologists (reader 1: 13, reader 2: 4, and reader 3: 3 years of experience in diagnostic neuroradiology), who assessed them individually for aneurysms. Detection sensitivities for aneurysms of the readers with and without the assistance of the DLM were compared. RESULTS: In the test set, the detection sensitivity of the DLM-Ens (85.7%) was comparable to the radiologists (reader 1: 91.2%, reader 2: 86.5%, and reader 3: 86.5%; Fleiss κ of 0.502). DLM-assistance significantly increased the detection sensitivity (reader 1: 97.6%, reader 2: 97.6%,and reader 3: 96.0%; overall P=.024; Fleiss κ of 0.878), especially for secondary aneurysms (88.2% of the additional aneurysms provided by the DLM). CONCLUSION: Deep learning significantly improved the detection sensitivity of radiologists for aneurysms in aSAH, especially for secondary aneurysms. It therefore represents a valuable adjunct for physicians to establish an accurate diagnosis in order to optimize patient treatment.


Assuntos
Aprendizado Profundo , Aneurisma Intracraniano , Hemorragia Subaracnóidea , Angiografia Digital , Angiografia Cerebral , Humanos , Aneurisma Intracraniano/diagnóstico por imagem , Radiologistas , Sensibilidade e Especificidade , Hemorragia Subaracnóidea/diagnóstico por imagem
20.
Abdom Radiol (NY) ; 46(7): 3501-3511, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33715050

RESUMO

PURPOSE: To evaluate vessel assessment in virtual monoenergetic images (VMI40keV) and virtual-non-contrast images (VNC) derived from venous phase spectral detector computed tomography (SDCT) acquisitions in comparison to arterial phase and true non-contrast (TNC) images. METHODS: Triphasic abdominal SDCT was performed in 25 patients including TNC, arterial and venous phase. VMI40keV and VNC were reconstructed from the venous phase and compared to conventional arterial-phase images (CIart), TNC and conventional venous-phase images (CIven). Vessel contrast and virtual contrast removal were analyzed with region-of-interest-based measurements and in a qualitative assessment. RESULTS: Quantitative analysis revealed no significant attenuation differences between TNC and VNC in arterial vessels (p-range 0.07-0.47) except for the renal artery (p = 0.011). For venous vessels, significant differences between TNC and VNC were found for all veins (p < 0.001) except the inferior vena cava (p = 0.26), yet these differences remained within a 10 HU range in most patients. No significant attenuation differences were found between CIart/VMI40keV in arterial vessels (p-range 0.06-0.86). Contrast-to-noise ratio provided by VMI40keV and CIart was equivalent for all arterial vessels assessed (p-range 0.14-0.91). Qualitatively, VMI40keV showed similar enhancement of abdominal and pelvic arteries as CIart and VNC were rated comparable to TNC. CONCLUSION: Our study suggests that VNC and VMI40keV derived from single venous-phase SDCT offer comparable assessment of major abdominal vessels as provided by routine triphasic examinations, if no dynamic contrast information is required.


Assuntos
Abdome , Tomografia Computadorizada por Raios X , Abdome/diagnóstico por imagem , Humanos , Artéria Renal , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA