Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Annu Rev Physiol ; 2025 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303272

RESUMO

For physiological processes in the vital organs of eutherian mammals to function, it is important to maintain constant core body temperature at ∼37°C. Mammals generate heat internally by thermogenesis. The focus of this review is on heat generated in resting skeletal muscles, using the same cellular components that muscles use to regulate cytoplasmic calcium concentrations [Ca2+] and contraction. Key to this process, known as muscle-based nonshivering thermogenesis (MB-NST), are tiny Ca2+ movements and associated ATP turnover coordinated by the plasma membrane, sarcoplasmic reticulum (SR), and the mitochondria. MB-NST has made mammals with gain-of-function SR ryanodine receptor (RyR) variants vulnerable to excessive heat generation that can be potentially lethal, known as malignant hyperthermia. Studies of RyR variants using recently developed techniques have advanced our understanding of MB-NST.

2.
Acta Physiol (Oxf) ; 240(3): e14098, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38240476

RESUMO

AIM: A fraction of the Ca2+ released from the sarcoplasmic reticulum (SR) enters mitochondria to transiently increase its [Ca2+ ] ([Ca2+ ]mito ). This transient [Ca2+ ]mito increase may be important in the resynthesis of ATP and other processes. The resynthesis of ATP in the mitochondria generates heat that can lead to hypermetabolic reactions in muscle with ryanodine receptor 1 (RyR1) variants during the cyclic releasing of SR Ca2+ in the presence of a RyR1 agonist. We aimed to analyse whether the mitochondria of RYR1 variant muscle handles Ca2+ differently from healthy muscle. METHODS: We used confocal microscopy to track mitochondrial and cytoplasmic Ca2+ with fluorescent dyes simultaneously during caffeine-induced Ca2+ waves in extensor digitorum longus muscle fibres from healthy mice and mice heterozygous (HET) for a malignant hyperthermia-causative RYR1 variant. RESULTS: Mitochondrial Ca2+ -transient peaks trailed the peak of cytoplasmic Ca2+ transients by many seconds with [Ca2+ ]mito not increasing by more than 250 nM. A strong linear relationship between cytoplasmic Ca2+ and [Ca2+ ]mito amplitudes was observed in HET RYR1 KI fibres but not wild type (WT). CONCLUSION: Our results indicate that [Ca2+ ]mito change within the nM range during SR Ca2+ release. HET fibre mitochondria are more sensitive to SR Ca2+ release flux than WT. This may indicate post-translation modification differences of the mitochondrial Ca2+ uniporter between the genotypes.


Assuntos
Mutação com Ganho de Função , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Camundongos , Trifosfato de Adenosina/metabolismo , Mitocôndrias , Fibras Musculares Esqueléticas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
3.
Nat Commun ; 14(1): 1036, 2023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36823422

RESUMO

Multivalent ligands of ion channels have proven to be both very rare and highly valuable in yielding unique insights into channel structure and pharmacology. Here, we describe a bivalent peptide from the venom of Xibalbanus tulumensis, a troglobitic arthropod from the enigmatic class Remipedia, that causes persistent calcium release by activation of ion channels involved in muscle contraction. The high-resolution solution structure of φ-Xibalbin3-Xt3a reveals a tandem repeat arrangement of inhibitor-cysteine knot (ICK) domains previously only found in spider venoms. The individual repeats of Xt3a share sequence similarity with a family of scorpion toxins that target ryanodine receptors (RyR). Single-channel electrophysiology and quantification of released Ca2+ stores within skinned muscle fibers confirm Xt3a as a bivalent RyR modulator. Our results reveal convergent evolution of RyR targeting toxins in remipede and scorpion venoms, while the tandem-ICK repeat architecture is an evolutionary innovation that is convergent with toxins from spider venoms.


Assuntos
Canal de Liberação de Cálcio do Receptor de Rianodina , Venenos de Escorpião , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cálcio/metabolismo , Rianodina/farmacologia , Sequência de Aminoácidos , Peptídeos/química , Venenos de Escorpião/farmacologia , Venenos de Escorpião/química
4.
Proc Natl Acad Sci U S A ; 120(4): e2117503120, 2023 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-36649401

RESUMO

Resting skeletal muscle generates heat for endothermy in mammals but not amphibians, while both use the same Ca2+-handling proteins and membrane structures to conduct excitation-contraction coupling apart from having different ryanodine receptor (RyR) isoforms for Ca2+ release. The sarcoplasmic reticulum (SR) generates heat following Adenosine triphosphate (ATP) hydrolysis at the Ca2+ pump, which is amplified by increasing RyR1 Ca2+ leak in mammals, subsequently increasing cytoplasmic [Ca2+] ([Ca2+]cyto). For thermogenesis to be functional, rising [Ca2+]cyto must not interfere with cytoplasmic effectors of the sympathetic nervous system (SNS) that likely increase RyR1 Ca2+ leak; nor should it compromise the muscle remaining relaxed. To achieve this, Ca2+ activated, regenerative Ca2+ release that is robust in lower vertebrates needs to be suppressed in mammals. However, it has not been clear whether: i) the RyR1 can be opened by local increases in [Ca2+]cyto; and ii) downstream effectors of the SNS increase RyR Ca2+ leak and subsequently, heat generation. By positioning amphibian and malignant hyperthermia-susceptible human-skinned muscle fibers perpendicularly, we induced abrupt rises in [Ca2+]cyto under identical conditions optimized for activating regenerative Ca2+ release as Ca2+ waves passed through the junction of fibers. Only mammalian fibers showed resistance to rising [Ca2+]cyto, resulting in increased SR Ca2+ load and leak. Fiber heat output was increased by cyclic adenosine monophosphate (cAMP)-induced RyR1 phosphorylation at Ser2844 and Ca2+ leak, indicating likely SNS regulation of thermogenesis. Thermogenesis occurred despite the absence of SR Ca2+ pump regulator sarcolipin. Thus, evolutionary isolation of RyR1 provided increased dynamic range for thermogenesis with sensitivity to cAMP, supporting endothermy.


Assuntos
Músculo Esquelético , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Humanos , Cálcio/metabolismo , Músculo Esquelético/metabolismo , Isoformas de Proteínas/metabolismo , Rianodina/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Termogênese , Anfíbios
5.
J Physiol ; 601(19): 4183-4202, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-35218018

RESUMO

Store-operated Ca2+ entry (SOCE) is critical to cell function. In skeletal muscle, SOCE has evolved alongside excitation-contraction coupling (EC coupling); as a result, it displays unique properties compared to SOCE in other cells. The plasma membrane of skeletal muscle is mostly internalized as the tubular system, with the tubules meeting the sarcoplasmic reticulum (SR) terminal cisternae, forming junctions where the proteins that regulate EC coupling and SOCE are positioned. In this review, we describe the properties and roles of SOCE based on direct measurements of Ca2+ influx during SR Ca2+ release and leak. SOCE is activated immediately and locally as the [Ca2+ ] of the junctional SR terminal cisternae ([Ca2+ ]jSR ) depletes. [Ca2+ ]jSR changes rapidly and steeply with increasing activity of the SR ryanodine receptor isoform 1 (RyR1). The high fidelity of [Ca2+ ]jSR with RyR1 activity probably depends on the SR Ca2+ -buffer calsequestrin that is located immediately behind RyR1 inside the SR. This arrangement provides in-phase activation and deactivation of SOCE with a large dynamic range, allowing precise grading of SOCE flux. The in-phase activation of SOCE as the SR partially depletes traps Ca2+ in the cytoplasm, preventing net Ca2+ loss. Mild presentation of RyR1 leak can occur under physiological conditions, providing fibre Ca2+ redistribution without changing fibre Ca2+ content. This condition preserves normal contractile function at the same time as increasing basal metabolic rate. However, higher RyR1 leak drives excess cytoplasmic and mitochondrial Ca2+ load, setting a deleterious intracellular environment that compromises the function of the skeletal muscle.


Assuntos
Músculo Esquelético , Canal de Liberação de Cálcio do Receptor de Rianodina , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Músculo Esquelético/fisiologia , Sinalização do Cálcio , Retículo Sarcoplasmático/metabolismo , Citoplasma/metabolismo , Cálcio/metabolismo
6.
Am J Physiol Cell Physiol ; 323(4): C1285-C1289, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094438

RESUMO

Ca2+ is an integral component of the functional and developmental regulation of the mitochondria. In skeletal muscle, Ca2+ is reported to modulate the rate of ATP resynthesis, regulate the expression of peroxisome proliferator-activated receptor-gamma coactivator 1 (PGC1α) following exercise, and drive the generation of reactive oxygen species (ROS). Due to the latter, mitochondrial Ca2+ overload is recognized as a pathophysiological event but the former events represent important physiological functions in need of tight regulation. Recently, we described the relationship between [Ca2+]mito and resting [Ca2+]cyto and other mitochondrial Ca2+-handling properties of skeletal muscle. An important next step is to understand the triggers for Ca2+ redistribution between intracellular compartments, which determine the mitochondrial Ca2+ load. These triggers in both physiological and pathophysiological scenarios can be traced to the coupled activity of the ryanodine receptor 1 (RyR1) and store-operated Ca2+ entry (SOCE) in the resting muscle. In this piece, we will discuss some issues regarding Ca2+ measurements relevant to mitochondrial Ca2+-handling, the steady-state relationship between cytoplasmic and mitochondrial Ca2+, and the potential implications for Ca2+ handling by muscle mitochondria and cellular function.


Assuntos
Cálcio , Canal de Liberação de Cálcio do Receptor de Rianodina , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
8.
J Gen Physiol ; 154(9)2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35311921

RESUMO

Cycling of Ca2+ between the sarcoplasmic reticulum (SR) and myoplasm is an important component of skeletal muscle resting metabolism. As part of this cycle, Ca2+ leaks from the SR into the myoplasm and is pumped back into the SR using ATP, which leads to the consumption of O2 and generation of heat. Ca2+ may leak through release channels or ryanodine receptors (RYRs). RYR Ca2+ leak can be monitored in a skinned fiber preparation in which leaked Ca2+ is pumped into the t-system and measured with a fluorescent dye. However, accurate quantification faces a number of hurdles. To overcome them, we developed a mathematical model of Ca2+ movement in these preparations. The model incorporated Ca2+ pumps that move Ca2+ from the myoplasm to the SR and from the junctional space (JS) to the t-system, Ca2+ buffering by EGTA in the JS and myoplasm and by buffers in the SR, and Ca2+ leaks from the SR into the JS and myoplasm and from the t-system into the myoplasm. The model accurately simulated Ca2+ uptake into the t-system, the relationship between myoplasmic [Ca2+] and steady-state t-system [Ca2+], and the effect of blocking RYR Ca2+ leak on t-system Ca2+ uptake. The magnitude of the leak through the RYRs would contribute ∼5% of the resting heat production of human muscle. In normal resting fibers, RYR Ca2+ leak makes a small contribution to resting metabolism. RYR-focused pathologies have the potential to increase RYR Ca2+ leak and the RYR leak component of resting metabolism.


Assuntos
Cálcio , Fibras Musculares Esqueléticas , Canal de Liberação de Cálcio do Receptor de Rianodina , Termogênese , Cálcio/metabolismo , Humanos , Modelos Teóricos , Fibras Musculares Esqueléticas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046046

RESUMO

Mammals rely on nonshivering thermogenesis (NST) from skeletal muscle so that cold temperatures can be tolerated. NST results from activity of the sarcoplasmic reticulum (SR) Ca2+ pump in skeletal muscle, but the mechanisms that regulate this activity are unknown. Here, we develop a single-fiber assay to investigate the role of Ca2+ leak through ryanodine receptor 1 (RyR1) to generate heat at the SR Ca2+ pump in resting muscle. By inhibiting a subpopulation of RyR1s in a single-fiber preparation via targeted delivery of ryanodine through transverse tubules, we achieve in-preparation isolation of RyR1 Ca2+ leak. This maneuver provided a critical increase in signal-to-noise of the SR-temperature-sensitive dye ER thermoyellow fluorescence signal from the fiber to allow detection of SR temperature changes as either RyR1 or SR Ca2+ pump activity was altered. We found that RyR1 Ca2+ leak raises cytosolic [Ca2+] in the local vicinity of the SR Ca2+ pump to amplify thermogenesis. Furthermore, gene-dose-dependent increases in RyR1 leak in RYR1 mutant mice result in progressive rises in leak-dependent heat, consistent with raised local [Ca2+] at the SR Ca2+ pump via RyR1 Ca2+ leak. We also show that basal RyR Ca2+ leak and the heat generated by the SR Ca2+ pump in the absence of RyR Ca2+ leak is greater in fibers from mice than from toads. The distinct function of RyRs and SR Ca2+ pump in endothermic mammals compared to ectothermic amphibians provides insights into the mechanisms by which mammalian skeletal muscle achieves thermogenesis at rest.


Assuntos
Cálcio/metabolismo , Músculo Esquelético/metabolismo , Descanso , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Termogênese , Animais , Camundongos , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Termogênese/genética
10.
J Biol Chem ; 298(1): 101412, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34793835

RESUMO

The N-terminal region (NTR) of ryanodine receptor (RyR) channels is critical for the regulation of Ca2+ release during excitation-contraction (EC) coupling in muscle. The NTR hosts numerous mutations linked to skeletal (RyR1) and cardiac (RyR2) myopathies, highlighting its potential as a therapeutic target. Here, we constructed two biosensors by labeling the mouse RyR2 NTR at domains A, B, and C with FRET pairs. Using fluorescence lifetime (FLT) detection of intramolecular FRET signal, we developed high-throughput screening (HTS) assays with these biosensors to identify small-molecule RyR modulators. We then screened a small validation library and identified several hits. Hits with saturable FRET dose-response profiles and previously unreported effects on RyR were further tested using [3H]ryanodine binding to isolated sarcoplasmic reticulum vesicles to determine effects on intact RyR opening in its natural membrane. We identified three novel inhibitors of both RyR1 and RyR2 and two RyR1-selective inhibitors effective at nanomolar Ca2+. Two of these hits activated RyR1 only at micromolar Ca2+, highlighting them as potential enhancers of excitation-contraction coupling. To determine whether such hits can inhibit RyR leak in muscle, we further focused on one, an FDA-approved natural antibiotic, fusidic acid (FA). In skinned skeletal myofibers and permeabilized cardiomyocytes, FA inhibited RyR leak with no detrimental effect on skeletal myofiber excitation-contraction coupling. However, in intact cardiomyocytes, FA induced arrhythmogenic Ca2+ transients, a cautionary observation for a compound with an otherwise solid safety record. These results indicate that HTS campaigns using the NTR biosensor can identify compounds with therapeutic potential.


Assuntos
Técnicas Biossensoriais , Canal de Liberação de Cálcio do Receptor de Rianodina , Animais , Cálcio/metabolismo , Transferência Ressonante de Energia de Fluorescência , Ensaios de Triagem em Larga Escala , Camundongos , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/análise , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
11.
Sci Adv ; 7(44): eabi7166, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705503

RESUMO

Muscle contraction depends on tightly regulated Ca2+ release. Aberrant Ca2+ leak through ryanodine receptor 1 (RyR1) on the sarcoplasmic reticulum (SR) membrane can lead to heatstroke and malignant hyperthermia (MH) susceptibility, as well as severe myopathy. However, the mechanism by which Ca2+ leak drives these pathologies is unknown. Here, we investigate the effects of four mouse genotypes with increasingly severe RyR1 leak in skeletal muscle fibers. We find that RyR1 Ca2+ leak initiates a cascade of events that cause precise redistribution of Ca2+ among the SR, cytoplasm, and mitochondria through altering the Ca2+ permeability of the transverse tubular system membrane. This redistribution of Ca2+ allows mice with moderate RyR1 leak to maintain normal function; however, severe RyR1 leak with RYR1 mutations reduces the capacity to generate force. Our results reveal the mechanism underlying force preservation, increased ATP metabolism, and susceptibility to MH in individuals with gain-of-function RYR1 mutations.

12.
J Physiol ; 599(1): 157-170, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32991741

RESUMO

KEY POINTS: Accumulation of inorganic phosphate (Pi ) may contribute to muscle fatigue by precipitating calcium salts inside the sarcoplasmic reticulum (SR). Neither direct demonstration of this process nor definition of the entry pathway of Pi into SR are fully established.  We showed that Pi promoted Ca2+ release at concentrations below 10 mm and decreased it at higher concentrations. This decrease correlated well with that of [Ca2+ ]SR .  Pre-treatment of permeabilized myofibres with 2 mm Cl- channel blocker 9-anthracenecarboxylic acid (9AC) inhibited both effects of Pi .  The biphasic dependence of Ca2+ release on [Pi ] is explained by a direct effect of Pi acting on the SR Ca2+ release channel, combined with the intra-SR precipitation of Ca2+ salts. The effects of 9AC demonstrate that Pi enters the SR via a Cl- pathway of an as-yet-undefined molecular nature. ABSTRACT: Fatiguing exercise causes hydrolysis of phosphocreatine, increasing the intracellular concentration of inorganic phosphate (Pi ). Pi diffuses into the sarcoplasmic reticulum (SR) where it is believed to form insoluble Ca2+ salts, thus contributing to the impairment of Ca2+ release. Information on the Pi entrance pathway is still lacking. In amphibian muscles endowed with isoform 3 of the RyR channel, Ca2+ spark frequency is correlated with the Ca2+ load of the SR and can be used to monitor this variable. We studied the effects of Pi on Ca2+ sparks in permeabilized fibres of the frog. Relative event frequency (f/fref ) rose with increasing [Pi ], reaching 2.54 ± 1.6 at 5 mm, and then decreased monotonically, reaching 0.09 ± 0.03 at [Pi ] = 80 mm. Measurement of [Ca2+ ]SR confirmed a decrease correlated with spark frequency at high [Pi ]. A large [Ca2+ ]SR surge was observed upon Pi removal. Anion channels are a putative path for Pi into the SR. We tested the effect of the chloride channel blocker 9-anthracenecarboxylic acid (9AC) on Pi entrance. 9AC (400 µm) applied to the cytoplasm produced a non-significant increase in spark frequency and reduced the Pi effects on this parameter. Fibre treatment with 2 mm 9AC in the presence of high cytoplasmic Mg2+ suppressed the effects of Pi on [Ca2+ ]SR and spark frequency up to 55 mm [Pi ]. These results suggest that chloride channels (or transporters) provide the main pathway of inorganic phosphate into the SR and confirm that Pi impairs Ca2+ release by accumulating and precipitating with Ca2+ inside the SR, thus contributing to myogenic fatigue.


Assuntos
Cálcio , Fosfatos , Cálcio/metabolismo , Sinalização do Cálcio , Canais de Cloreto/metabolismo , Cloretos/metabolismo , Contração Muscular , Fosfatos/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
13.
J Gen Physiol ; 153(1)2021 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-33316029

RESUMO

BTP2 is an inhibitor of the Ca2+ channel Orai1, which mediates store-operated Ca2+ entry (SOCE). Despite having been extensively used in skeletal muscle, the effects of this inhibitor on Ca2+ handling in muscle cells have not been described. To address this question, we used intra- and extracellular application of BTP2 in mechanically skinned fibers and developed a localized modulator application approach, which provided in-preparation reference and test fiber sections to enhance detection of the effect of Ca2+ handling modulators. In addition to blocking Orai1-dependent SOCE, we found a BTP2-dependent inhibition of resting extracellular Ca2+ flux. Increasing concentrations of BTP2 caused a shift from inducing accumulation of Ca2+ in the t-system due to Orai1 blocking to reducing the resting [Ca2+] in the sealed t-system. This effect was not observed in the absence of functional ryanodine receptors (RYRs), suggesting that higher concentrations of BTP2 impair RYR function. Additionally, we found that BTP2 impaired action potential-induced Ca2+ release from the sarcoplasmic reticulum during repetitive stimulation without compromising the fiber Ca2+ content. BTP2 was found to have an effect on RYR-mediated Ca2+ release, suggesting that RYR is the point of BTP2-induced inhibition during cycles of EC coupling. The effects of BTP2 on the RYR Ca2+ leak and release were abolished by pre-exposure to saponin, indicating that the effects of BTP2 on the RYR are not direct and require a functional t-system. Our results demonstrate the presence of a SOCE channels-mediated basal Ca2+ influx in healthy muscle fibers and indicate that BTP2 has multiple effects on Ca2+ handling, including indirect effects on the activity of the RYR.


Assuntos
Cálcio , Retículo Sarcoplasmático , Cálcio/metabolismo , Sinalização do Cálcio , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo
14.
Front Physiol ; 11: 597647, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33262706

RESUMO

Store-operated calcium entry (SOCE) plays a pivotal role in skeletal muscle physiology as, when impaired, the muscle is prone to early fatigue and the development of different myopathies. A chronic mode of slow SOCE activation is carried by stromal interaction molecule 1 (STIM1) and calcium-release activated channel 1 (ORAI1) proteins. A phasic mode of fast SOCE (pSOCE) occurs upon single muscle twitches in synchrony with excitation-contraction coupling, presumably activated by a local and transient depletion at the terminal cisternae of the sarcoplasmic reticulum Ca2+-stores. Both SOCE mechanisms are poorly understood. In particular, pSOCE has not been described in detail because the conditions required for its detection in mouse skeletal muscle have not been established to date. Here we report the first measurements of pSOCE in mouse extensor digitorum longus muscle fibers using electrical field stimulation (EFS) in a skinned fiber preparation. We show moderate voluntary wheel running to be a prerequisite to render muscle fibers reasonably susceptible for EFS, and thereby define an experimental paradigm to measure pSOCE in mouse muscle. Continuous monitoring of the physical activity of mice housed in cages equipped with running wheels revealed an optimal training period of 5-6 days, whereby best responsiveness to EFS negatively correlated with running distance and speed. A comparison of pSOCE kinetic data in mouse with those previously derived from rat muscle demonstrated very similar properties and suggests the existence and similar function of pSOCE across mammalian species. The new technique presented herein enables future experiments with genetically modified mouse models to define the molecular entities, presumably STIM1 and ORAI1, and the physiological role of pSOCE in health and under conditions of disease.

15.
Gene ; 752: 144765, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32413480

RESUMO

The natural flight response in shrimp is powered by rapid contractions of the abdominal muscle fibres to propel themselves backwards away from perceived danger. This muscle contraction is dependent on repetitive depolarization of muscle plasma membrane, triggering tightly spaced cytoplasmic [Ca2+] transients and rapidly rising tetanic force responses. To achieve such high amplitude and high frequency of Ca2+ transients requires a high abundance of sarcoplasmic/endoplasmic reticulum Ca2+ ATPase (SERCA) to rapidly clear cytoplasmic Ca2+ between each transient and an efficient Ca2+ release system consisting of the Ryanodine Receptor (RyR), and voltage gated Ca2+ channels (CaVs). With the aim to expand our knowledge of muscle gene function and identify orthologous genes regulating muscle excitation-contraction (EC) coupling, this study assembled nine Penaeid shrimp muscle transcriptomes. On average, the nine transcriptomes contained 27,000 contigs, with an annotation rate of 36% and a BUSCO completeness of 70%. Despite maintaining their function, the crustacean RyR and CaV proteins showed evidence of significant diversification from mammalian orthologs, while SERCA remained more conserved. Several key components of protein interaction were conserved, while others showed distinct crustacean specific evolutionary adaptations. Lastly, this study revealed approximately 1,000 orthologous genes involved in muscle specific processes present across all nine species.


Assuntos
Acoplamento Excitação-Contração/genética , Penaeidae/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Animais , Evolução Biológica , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio/fisiologia , Citosol/metabolismo , Evolução Molecular , Contração Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Especificidade da Espécie , Transcriptoma/genética
16.
ACS Pharmacol Transl Sci ; 3(1): 135-147, 2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32190822

RESUMO

Store operated calcium (Ca2+) entry is an important homeostatic mechanism in cells, whereby the release of Ca2+ from intracellular endoplasmic reticulum stores triggers the activation of a Ca2+ influx pathway. Mediated by Orai1, this Ca2+ influx has specific and essential roles in biological processes as diverse as lactation to immunity. Although pharmacological inhibitors of this Ca2+ influx mechanism have helped to define the role of store operated Ca2+ entry in many cellular events, the lack of isoform specific modulators and activators of Orai1 has limited our full understanding of these processes. Here we report the identification and synthesis of an Orai1 activity enhancer that concurrently potentiated Orai1 Ca2+ -dependent inactivation (CDI). This unique enhancer of Orai1 had only a modest effect on Orai3 with weak inhibitory effects at high concentrations in intact MCF-7 breast cancer cells. The Orai1 enhancer heightened vascular smooth muscle cell migration induced by platelet-derived growth factor and the unique store operated Ca2+ entry pathway present in skeletal muscle cells. These studies show that IA65 is an exemplar for the translation and development of Orai isoform selective agents. The ability of IA65 to activate CDI demonstrates that agents can be developed that can enhance Orai1-mediated Ca2+ influx but avoid the cytotoxicity associated with sustained Orai1 activation. IA65 and/or future analogues with similar Orai1 and CDI activating properties could be fine tuners of physiological processes important in specific disease states, such as cellular migration and immune cell function.

17.
Sci Rep ; 10(1): 1791, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019969

RESUMO

Elevated cytoplasmic [Ca2+] is characteristic in severe skeletal and cardiac myopathies, diabetes, and neurodegeneration, and partly results from increased Ca2+ leak from sarcoplasmic reticulum stores via dysregulated ryanodine receptor (RyR) channels. Consequently, RyR is recognized as a high-value target for drug discovery to treat such pathologies. Using a FRET-based high-throughput screening assay that we previously reported, we identified small-molecule compounds that modulate the skeletal muscle channel isoform (RyR1) interaction with calmodulin and FK506 binding protein 12.6. Two such compounds, chloroxine and myricetin, increase FRET and inhibit [3H]ryanodine binding to RyR1 at nanomolar Ca2+. Both compounds also decrease RyR1 Ca2+ leak in human skinned skeletal muscle fibers. Furthermore, we identified compound concentrations that reduced leak by > 50% but only slightly affected Ca2+ release in excitation-contraction coupling, which is essential for normal muscle contraction. This report demonstrates a pipeline that effectively filters small-molecule RyR1 modulators towards clinical relevance.


Assuntos
Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Antibacterianos/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Calmodulina/metabolismo , Cloroquinolinóis/farmacologia , Descoberta de Drogas , Flavonoides/farmacologia , Transferência Ressonante de Energia de Fluorescência , Humanos , Músculo Esquelético/efeitos dos fármacos
18.
Biochim Biophys Acta Mol Cell Res ; 1866(7): 1239-1248, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30825472

RESUMO

Skeletal muscle fibres support store-operated Ca2+-entry (SOCE) across the t-tubular membrane upon exhaustive depletion of Ca2+ from the sarcoplasmic reticulum (SR). Recently we demonstrated the presence of a novel mode of SOCE activated under conditions of maintained [Ca2+]SR. This phasic SOCE manifested in a fast and transient manner in synchrony with excitation contraction (EC)-coupling mediated SR Ca2+-release (Communications Biology 1:31, doi: https://doi.org/10.1038/s42003-018-0033-7). Stromal interaction molecule 1 (STIM1) and calcium release-activated calcium channel 1 (ORAI1), positioned at the SR and t-system membranes, respectively, are the considered molecular correlate of SOCE. The evidence suggests that at the triads, where the terminal cisternae of the SR sandwich a t-tubule, STIM1 and ORAI1 proteins pre-position to allow for enhanced SOCE transduction. Here we show that phasic SOCE is not only shaped by global [Ca2+]SR but provide evidence for a local activation within nanodomains at the terminal cisternae of the SR. This feature may allow SOCE to modulate [Ca2+]SR during EC coupling. We define SOCE to occur on the same timescale as EC coupling and determine the temporal coherence of SOCE activation to SR Ca2+ release. We derive a delay of 0.3 ms reflecting diffusive Ca2+-equilibration at the luminal ryanodine receptor 1 (RyR1) channel mouth upon SR Ca2+-release. Numerical simulations of Ca2+-calsequestrin binding estimates a characteristic diffusion length and confines an upper limit for the spatial distance between STIM1 and RyR1. Experimental evidence for a 4- fold change in t-system Ca2+-permeability upon prolonged electrical stimulation in conjunction with numerical simulations of Ca2+-STIM1 binding suggests a Ca2+ dissociation constant of STIM1 below 0.35 mM. Our results show that phasic SOCE is intimately linked with RyR opening and closing, with only µs delays, because [Ca2+] in the terminal cisternae is just above the threshold for Ca2+ dissociation from STIM1 under physiological resting conditions. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.


Assuntos
Cálcio/metabolismo , Acoplamento Excitação-Contração/fisiologia , Músculo Esquelético/metabolismo , Proteína ORAI1/metabolismo , Retículo Sarcoplasmático/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Animais , Masculino , Ratos , Ratos Wistar
19.
Commun Biol ; 1: 31, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30271917

RESUMO

Store-operated calcium (Ca2+) entry (SOCE) in skeletal muscle is rapidly activated across the tubular system during direct activation of Ca2+ release. The tubular system is the invagination of the plasma membrane that forms junctions with the sarcoplasmic reticulum (SR) where STIM1, Orai1 and ryanodine receptors are found. The physiological activation of SOCE in muscle is not defined, thus clouding its physiological role. Here we show that the magnitude of a phasic tubular system Ca2+ influx is dependent on SR Ca2+ depletion magnitude, and define this as SOCE. Consistent with SOCE, the influx was resistant to nifedipine and BayK8644, and silenced by inhibition of SR Ca2+ release during excitation. The SOCE transient was shaped by action potential frequency and SR Ca2+ pump activity. Our results show that SOCE in skeletal muscle acts as an immediate counter-flux to Ca2+ loss across the tubular system during excitation-contraction coupling.

20.
Proc Natl Acad Sci U S A ; 115(32): 8215-8220, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-30038012

RESUMO

We used the nanometer-wide tubules of the transverse tubular (t)-system of human skeletal muscle fibers as sensitive sensors for the quantitative monitoring of the Ca2+-handling properties in the narrow junctional cytoplasmic space sandwiched between the tubular membrane and the sarcoplasmic reticulum cisternae in single muscle fibers. The t-system sealed with a Ca2+-sensitive dye trapped in it is sensitive to changes in ryanodine receptor (RyR) Ca2+ leak, the store operated calcium entry flux, plasma membrane Ca pump, and sodium-calcium exchanger activities, thus making the sealed t-system a nanodomain Ca2+ sensor of Ca2+ dynamics in the junctional space. The sensor was used to assess the basal Ca2+-handling properties of human muscle fibers obtained by needle biopsy from control subjects and from people with a malignant hyperthermia (MH) causative RyR variant. Using this approach we show that the muscle fibers from MH-susceptible individuals display leakier RyRs and a greater capacity to extrude Ca2+ across the t-system membrane compared with fibers from controls. This study provides a quantitative way to assess the effect of RyR variants on junctional membrane Ca2+ handling under defined ionic conditions.


Assuntos
Cálcio/metabolismo , Junções Intercelulares/patologia , Hipertermia Maligna/patologia , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Retículo Sarcoplasmático/patologia , Adulto , Biópsia , Cálcio/química , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patologia , Feminino , Corantes Fluorescentes/química , Humanos , Junções Intercelulares/metabolismo , Masculino , Hipertermia Maligna/genética , Mutação , Nanoestruturas/química , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA