Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
STAR Protoc ; 3(3): 101538, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-35841591

RESUMO

We present a protocol to measure the effect of pharmacological treatments on the mechanical tension experienced by nesprins at the cytoplasmic surface of the nuclear envelope of mammalian cells in culture. We apply this protocol to MDCK epithelial cells exposed to the actin depolymerization agent cytochalasin D. To do so, we perform confocal spectral imaging of transiently expressed molecular tension sensors of mini-nesprin 2G and analyze the FRET signal from the sensors with a custom-made Fiji script. For complete details on the use and execution of this protocol, please refer to Déjardin et al. (2020).


Assuntos
Actinas , Citocalasina D/farmacologia , Membrana Nuclear/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Animais , Estruturas Citoplasmáticas/ultraestrutura , Cães , Células Madin Darby de Rim Canino/citologia , Células Madin Darby de Rim Canino/fisiologia , Mamíferos , Microscopia Confocal/métodos , Proteínas do Tecido Nervoso , Membrana Nuclear/química , Membrana Nuclear/fisiologia , Proteínas Nucleares , Tensão Superficial/efeitos dos fármacos
4.
Oceanography (Wash D C) ; 30(2): 38-48, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35095239

RESUMO

The Salinity Processes in the Upper-ocean Regional Study (SPURS) aims to understand the patterns and variability of sea surface salinity. In order to capture the wide range of spatial and temporal scales associated with processes controlling salinity in the upper ocean, research vessels delivered autonomous instruments to remote sites, one in the North Atlantic and one in the Eastern Pacific. Instruments sampled for one complete annual cycle at each of these two sites, which are subject to contrasting atmospheric forcing. The SPURS field programs coordinated sampling from many different platforms, using a mix of Lagrangian and Eulerian approaches. This article discusses the motivations, implementation, and first results of the SPURS-1 and SPURS-2 programs.

5.
Bull Am Meteorol Soc ; 98(11): 2429-2454, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30270923

RESUMO

Diapycnal mixing plays a primary role in the thermodynamic balance of the ocean and, consequently, in oceanic heat and carbon uptake and storage. Though observed mixing rates are on average consistent with values required by inverse models, recent attention has focused on the dramatic spatial variability, spanning several orders of magnitude, of mixing rates in both the upper and deep ocean. Away from ocean boundaries, the spatio-temporal patterns of mixing are largely driven by the geography of generation, propagation and dissipation of internal waves, which supply much of the power for turbulent mixing. Over the last five years and under the auspices of US CLIVAR, a NSF- and NOAA-supported Climate Process Team has been engaged in developing, implementing and testing dynamics-based parameterizations for internal-wave driven turbulent mixing in global ocean models. The work has primarily focused on turbulence 1) near sites of internal tide generation, 2) in the upper ocean related to wind-generated near inertial motions, 3) due to internal lee waves generated by low-frequency mesoscale flows over topography, and 4) at ocean margins. Here we review recent progress, describe the tools developed, and discuss future directions.

7.
Nature ; 521(7550): 65-9, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25951285

RESUMO

Internal gravity waves, the subsurface analogue of the familiar surface gravity waves that break on beaches, are ubiquitous in the ocean. Because of their strong vertical and horizontal currents, and the turbulent mixing caused by their breaking, they affect a panoply of ocean processes, such as the supply of nutrients for photosynthesis, sediment and pollutant transport and acoustic transmission; they also pose hazards for man-made structures in the ocean. Generated primarily by the wind and the tides, internal waves can travel thousands of kilometres from their sources before breaking, making it challenging to observe them and to include them in numerical climate models, which are sensitive to their effects. For over a decade, studies have targeted the South China Sea, where the oceans' most powerful known internal waves are generated in the Luzon Strait and steepen dramatically as they propagate west. Confusion has persisted regarding their mechanism of generation, variability and energy budget, however, owing to the lack of in situ data from the Luzon Strait, where extreme flow conditions make measurements difficult. Here we use new observations and numerical models to (1) show that the waves begin as sinusoidal disturbances rather than arising from sharp hydraulic phenomena, (2) reveal the existence of >200-metre-high breaking internal waves in the region of generation that give rise to turbulence levels >10,000 times that in the open ocean, (3) determine that the Kuroshio western boundary current noticeably refracts the internal wave field emanating from the Luzon Strait, and (4) demonstrate a factor-of-two agreement between modelled and observed energy fluxes, which allows us to produce an observationally supported energy budget of the region. Together, these findings give a cradle-to-grave picture of internal waves on a basin scale, which will support further improvements of their representation in numerical climate predictions.

8.
PLoS One ; 6(4): e19269, 2011 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-21556355

RESUMO

Beaked whales, specifically Blainville's (Mesoplodon densirostris) and Cuvier's (Ziphius cavirostris), are known to feed in the Tongue of the Ocean, Bahamas. These whales can be reliably detected and often localized within the Atlantic Undersea Test and Evaluation Center (AUTEC) acoustic sensor system. The AUTEC range is a regularly spaced bottom mounted hydrophone array covering >350 nm(2) providing a valuable network to record anthropogenic noise and marine mammal vocalizations. Assessments of the potential risks of noise exposure to beaked whales have historically occurred in the absence of information about the physical and biological environments in which these animals are distributed. In the fall of 2008, we used a downward looking 38 kHz SIMRAD EK60 echosounder to measure prey scattering layers concurrent with fine scale turbulence measurements from an autonomous turbulence profiler. Using an 8 km, 4-leaf clover sampling pattern, we completed a total of 7.5 repeat surveys with concurrently measured physical and biological oceanographic parameters, so as to examine the spatiotemporal scales and relationships among turbulence levels, biological scattering layers, and beaked whale foraging activity. We found a strong correlation among increased prey density and ocean vertical structure relative to increased click densities. Understanding the habitats of these whales and their utilization patterns will improve future models of beaked whale habitat as well as allowing more comprehensive assessments of exposure risk to anthropogenic sound.


Assuntos
Ecossistema , Oceanografia , Comportamento Predatório , Baleias/fisiologia , Animais , Bahamas
9.
Nature ; 448(7154): 680-3, 2007 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-17687321

RESUMO

Buoyancy exchange between the deep and the upper ocean, which is essential for maintaining global ocean circulation, mainly occurs through turbulent mixing. This mixing is thought to result primarily from instability of the oceanic internal wave field, but internal waves tend to radiate energy away from the regions in which they are generated rather than dissipate it locally as turbulence and the resulting distribution of turbulent mixing remains unknown. Another, more direct, mixing mechanism involves the generation of turbulence as strong flows pass through narrow passages in topography, but the amount of turbulence generated at such locations remains poorly quantified owing to a lack of direct measurements. Here we present observations from the crest of the Mid-Atlantic Ridge in the subtropical North Atlantic Ocean that suggest that passages in rift valleys and ridge-flank canyons provide the most energetic sites for oceanic turbulence. Our measurements show that diffusivities as large as 0.03 m2 s(-1) characterize the mixing downstream of a sill in a well-stratified boundary layer, with mixing levels remaining of the order of 10(-4) m2 s(-1) at the base of the main thermocline. These mixing rates are significantly higher than the diffusivities of the order of 10(-5) m2 s(-1) that characterize much of the global thermocline and the abyssal ocean. Our estimates suggest that overflows associated with narrow passages on the Mid-Atlantic Ridge in the North Atlantic Ocean produce as much buoyancy flux as has previously been estimated for the entire Romanche fracture zone, a large strait in the Mid-Atlantic Ridge that connects the North and South Atlantic basins. This flux is equivalent to the interior mixing that occurs in the entire North Atlantic basin at the depth of the passages, suggesting that turbulence generated in narrow passages on mid-ocean ridges may be important for buoyancy flux at the global scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA