Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 1990, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30760823

RESUMO

Chlamydomonas reinhardtii represents an ideal model microbial system to decipher starch metabolism. In this green algae, in cells growing in photosynthetic conditions, starch mainly accumulates as a sheath surrounding the pyrenoid while in cells subjected to a nutrient starvation, numerous starch granules are filling up the plastid stroma. The mechanisms underlying and regulating this switch from photosynthetic to storage starch metabolisms are not known. In this work, we have isolated a Chlamydomonas mutant strain containing a deletion in chromosome 2 which displays abnormal starch granule distribution. Under nitrogen starvation, this strain contains an additional starch granules population. These granules are twice as big as the wild-type granules and display characteristics of photosynthetic starch. Genetic and functional complementation analyses allowed us to identify the gene responsible for this original phenotype which was called BSG1 for "Bimodal Starch Granule". Possible roles of BSG1 in starch metabolism modifications during the transition from photosynthetic to starved growth conditions are discussed.


Assuntos
Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Grânulos Citoplasmáticos/genética , Amido/metabolismo , Deleção Cromossômica , Grânulos Citoplasmáticos/química , Fotossíntese/fisiologia , Inanição/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA