Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18606, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36329078

RESUMO

Globally, tunas are among the most valuable fish stocks, but are also inherently difficult to monitor and assess. Samples of larvae of Western Atlantic bluefin tuna Thunnus thynnus (Linnaeus, 1758) from standardized annual surveys in the northern Gulf of Mexico provide a potential source of "offspring" for close-kin mark-recapture (CKMR) estimates of abundance. However, the spatial patchiness and highly skewed numbers of larvae per tow suggest sampled larvae may come from a small number of parents, compromising the precision of CKMR. We used high throughput genomic profiling to study sibship within and among larval tows from the 2016 standardized Gulf-wide survey compared to targeted sampling carried out in 2017. Full- and half-siblings were found within both years, with 12% of 156 samples in 2016 and 56% of 317 samples in 2017 having at least one sibling. There were also two pairs of cross cohort half-siblings. Targeted sampling increased the number of larvae collected per sampling event but resulted in a higher proportion of siblings. The combined effective sample size across both years was about 75% of the nominal size, indicating that Gulf of Mexico larval collections could be a suitable source of juveniles for CKMR in Western Atlantic bluefin tuna.


Assuntos
Atum , Animais , Atum/genética , Larva , Golfo do México , Oceano Atlântico
2.
PLoS One ; 14(12): e0219236, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31887115

RESUMO

Quantifying ecosystem-level processes that drive community structure and function is key to the development of effective environmental restoration and management programs. To assess the effects of large-scale aquatic vegetation loss on fish and invertebrate communities in Florida estuaries, we quantified and compared the food webs of two adjacent spring-fed rivers that flow into the Gulf of Mexico. We constructed a food web model using field-based estimates of community absolute biomass and trophic interactions of a highly productive vegetated river, and modeled long-term simulations of vascular plant decline coupled with seasonal production of filamentous macroalgae. We then compared ecosystem model predictions to observed community structure of the second river that has undergone extensive vegetative habitat loss, including extirpation of several vascular plant species. Alternative models incorporating bottom-up regulation (decreased primary production resulting from plant loss) versus coupled top-down effects (compensatory predator search efficiency) were ranked by total absolute error of model predictions compared to the empirical community observations. Our best model for predicting community responses to vascular plant loss incorporated coupled effects of decreased primary production (bottom-up), increased prey search efficiency of large-bodied fishes at low vascular plant density (top-down), and decreased prey search efficiency of small-bodied fishes with increased biomass of filamentous macroalgae (bottom-up). The results of this study indicate that the loss of vascular plants from the coastal river ecosystem may alter the food web structure and result in a net decline in the biomass of fishes. These results are highly relevant to ongoing landscape-level restoration programs intended to improve aesthetics and ecosystem function of coastal spring-fed rivers by highlighting how the structure of these communities can be regulated both by resource availability and consumption. Restoration programs will need to acknowledge and incorporate both to be successful.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Recuperação e Remediação Ambiental/métodos , Animais , Biomassa , Estuários , Peixes/fisiologia , Florida , Cadeia Alimentar , Golfo do México , Invertebrados/fisiologia , Modelos Teóricos , Plantas , Rios , Estações do Ano
3.
PLoS One ; 11(6): e0156767, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27272215

RESUMO

Forecasts of the future abundance of western Atlantic bluefin tuna (Thunnus thynnus) have, for nearly two decades, been based on two competing views of future recruitment potential: (1) a "low" recruitment scenario based on hockey-stick (two-line) curve where the expected level of recruitment is set equal to the geometric mean of the recruitment estimates for the years after a supposed regime-shift in 1975, and (2) a "high" recruitment scenario based on a Beverton-Holt curve fit to the time series of spawner-recruit pairs beginning in 1970. Several investigators inferred the relative plausibility of these two scenarios based on measures of their ability to fit estimates of spawning biomass and recruitment derived from stock assessment outputs. Typically, these comparisons have assumed the assessment estimates of spawning biomass are known without error. It is shown here that ignoring error in the spawning biomass estimates can predispose model-choice approaches to favor the regime-shift hypothesis over the Beverton-Holt curve with higher recruitment potential. When the variance of the observation error approaches that which is typically estimated for assessment outputs, the same model-choice approaches tend to favor the single Beverton-Holt curve. For this and other reasons, it is argued that standard model-choice approaches are insufficient to make the case for a regime shift in the recruitment dynamics of western Atlantic bluefin tuna. A more fruitful course of action may be to move away from the current high/low recruitment dichotomy and focus instead on adopting biological reference points and management procedures that are robust to these and other sources of uncertainty.


Assuntos
Reprodução , Atum/fisiologia , Animais , Pesqueiros , Modelos Teóricos , Dinâmica Populacional , Previsões Demográficas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA