Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Bioeng Biotechnol ; 9: 623701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33738277

RESUMO

Surfactin is a lipoheptapeptide produced by several Bacillus species and identified for the first time in 1969. At first, the biosynthesis of this remarkable biosurfactant was described in this review. The peptide moiety of the surfactin is synthesized using huge multienzymatic proteins called NonRibosomal Peptide Synthetases. This mechanism is responsible for the peptide biodiversity of the members of the surfactin family. In addition, on the fatty acid side, fifteen different isoforms (from C12 to C17) can be incorporated so increasing the number of the surfactin-like biomolecules. The review also highlights the last development in metabolic modeling and engineering and in synthetic biology to direct surfactin biosynthesis but also to generate novel derivatives. This large set of different biomolecules leads to a broad spectrum of physico-chemical properties and biological activities. The last parts of the review summarized the numerous studies related to the production processes optimization as well as the approaches developed to increase the surfactin productivity of Bacillus cells taking into account the different steps of its biosynthesis from gene transcription to surfactin degradation in the culture medium.

2.
Plants (Basel) ; 9(5)2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-32443858

RESUMO

Some amphiphilic molecules are able to interact with the lipid matrix of plant plasma membranes and trigger the immune response in plants. This original mode of perception is not yet fully understood and biophysical approaches could help to obtain molecular insights. In this review, we focus on such membrane-interacting molecules, and present biophysically grounded methods that are used and are particularly interesting in the investigation of this mode of perception. Rather than going into overly technical details, the aim of this review was to provide to readers with a plant biochemistry background a good overview of how biophysics can help to study molecular interactions between bioactive amphiphilic molecules and plant lipid membranes. In particular, we present the biomimetic membrane models typically used, solid-state nuclear magnetic resonance, molecular modeling, and fluorescence approaches, because they are especially suitable for this field of research. For each technique, we provide a brief description, a few case studies, and the inherent limitations, so non-specialists can gain a good grasp on how they could extend their toolbox and/or could apply new techniques to study amphiphilic bioactive compound and lipid interactions.

3.
J Phys Chem B ; 123(42): 8916-8922, 2019 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-31558021

RESUMO

Self-assembly of peptides into supramolecular structures represents an active field of research with potential applications ranging from material science to medicine. Their study typically involves the application of a large toolbox of spectroscopic and imaging techniques. However, quite often, the structural aspects remain underexposed. Besides, molecular modeling of the self-assembly process is usually difficult to handle, since a vast conformational space has to be sampled. Here, we have used an approach that combines short molecular dynamics simulations for peptide dimerization and NMR restraints to build a model of the supramolecular structure from the dimeric units. Experimental NMR data notably provide crucial information about the conformation of the monomeric units, the supramolecular assembly dimensions, and the orientation of the individual peptides within the assembly. This in silico/in vitro mixed approach enables us to define accurate atomistic models of supramolecular structures of the bacterial cyclic lipodepsipeptide pseudodesmin A.


Assuntos
Simulação de Dinâmica Molecular , Peptídeos Cíclicos/síntese química , Acetonitrilas/química , Clorofórmio/química , Espectroscopia de Ressonância Magnética , Modelos Químicos , Modelos Moleculares , Peptídeos Cíclicos/química , Conformação Proteica , Solventes
4.
Int J Mol Sci ; 20(16)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426453

RESUMO

Since the 50's, the massive and "environmental naïve" use of synthetic chemistry has revolutionized the farming community facing the dramatic growth of demography. However, nowadays, the controversy grows regarding the long-term harmful effects of these products on human health and the environment. In this context, the use of essential oils (EOs) could be an alternative to chemical products and a better understanding of their mode of biological action for new and optimal applications is of importance. Indeed, if the biocidal effects of some EOs or their components have been at least partly elucidated at the molecular level, very little is currently known regarding their mechanism of action as herbicides at the molecular level. Here, we showed that cinnamon and Java citronella essential oils and some of their main components, i.e.,, cinnamaldehyde (CIN), citronellal (CitA), and citronellol (CitO) could act as efficient herbicides when spread on A. thaliana leaves. The individual EO molecules are small amphiphiles, allowing for them to cross the mesh of cell wall and directly interact with the plant plasma membrane (PPM), which is one of the potential cellular targets of EOs. Hence, we investigated and characterized their interaction with biomimetic PPM while using an integrative biophysical approach. If CitO and CitA, maintaining a similar chemical structure, are able to interact with the model membranes without permeabilizing effect, CIN belonging to the phenylpropanoid family, is not. We suggested that different mechanisms of action for the two types of molecules can occur: while the monoterpenes could disturb the lipid organization and/or domain formation, the phenylpropanoid CIN could interact with membrane receptors.


Assuntos
Arabidopsis/efeitos dos fármacos , Cinnamomum zeylanicum/química , Cymbopogon/química , Herbicidas/química , Óleos Voláteis/química , Acroleína/análogos & derivados , Acroleína/química , Acroleína/metabolismo , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/metabolismo , Aldeídos/química , Aldeídos/metabolismo , Arabidopsis/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Herbicidas/metabolismo , Óleos Voláteis/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo
5.
Biochemistry ; 56(12): 1746-1756, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28290671

RESUMO

Although they play a significant part in the regulation of microtubule structure, dynamics, and function, the disordered C-terminal tails of tubulin remain invisible to experimental structural methods and do not appear in the crystallographic structures that are currently available in the Protein Data Bank. Interestingly, these tails concentrate most of the sequence variability between tubulin isotypes and are the sites of the principal post-translational modifications undergone by this protein. Using homology modeling, we developed two complete models for the human αI/ßI- and αI/ßIII-tubulin isotypes that include their C-terminal tails. We then investigated the conformational variability of the two ß-tails using long time-scale classical molecular dynamics simulations that revealed similar features, notably the unexpected presence of common anchoring regions on the surface of the tuulin dimer, but also distinctive mobility or interaction patterns, some of which could be related to the tail lengths and charge distributions. We also observed in our simulations that the C-terminal tail from the ßI isotype, but not the ßIII isotype, formed contacts in the putative binding site of a recently discovered peptide that disrupts microtubule formation in glioma cells. Hindering the binding site in the ßI isotype would be consistent with this peptide's preferential disruption of microtubule formation in glioma, whose cells overexpress ßIII, compared to normal glial cells. While these observations need to be confirmed with more intensive sampling, our study opens new perspectives for the development of isotype-specific chemotherapy drugs.


Assuntos
Antineoplásicos/química , Proteínas de Neurofilamentos/química , Fragmentos de Peptídeos/química , Tubulina (Proteína)/química , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios Proteicos , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Estrutura Secundária de Proteína , Alinhamento de Sequência , Eletricidade Estática , Homologia Estrutural de Proteína , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo
6.
J Chem Theory Comput ; 11(7): 3510-22, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26575783

RESUMO

HiRE-RNA is a coarse-grained model for RNA structure prediction and the dynamical study of RNA folding. Using a reduced set of particles and detailed interactions accounting for base-pairing and stacking, we show that noncanonical and multiple base interactions are necessary to capture the full physical behavior of complex RNAs. In this paper, we give a full account of the model and present results on the folding, stability, and free energy surfaces of 16 systems with 12 to 76 nucleotides of increasingly complex architectures, ranging from monomers to dimers, using a total of 850 µs of simulation time.


Assuntos
Pareamento de Bases , Simulação de Dinâmica Molecular , Dobramento de RNA , RNA/química , Algoritmos , RNA/genética , Temperatura , Termodinâmica
7.
Biochemistry ; 54(23): 3660-9, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-26016807

RESUMO

NFL-TBS.40-63 is a 24 amino acid peptide corresponding to the tubulin-binding site located on the light neurofilament subunit, which selectively enters glioblastoma cells, where it disrupts their microtubule network and inhibits their proliferation. We investigated its structural variability and binding modes on a tubulin heterodimer using a combination of NMR experiments, docking, and molecular dynamics (MD) simulations. Our results show that, while lacking a stable structure, the peptide preferentially binds on a specific single site located near the ß-tubulin C-terminal end, thus giving us precious hints regarding the mechanism of action of the NFL-TBS.40-63 peptide's antimitotic activity at the molecular level.


Assuntos
Modelos Moleculares , Proteínas de Neurofilamentos/química , Fragmentos de Peptídeos/química , Tubulina (Proteína)/química , Sítios de Ligação , Humanos , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Proteínas de Neurofilamentos/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Solubilidade , Tubulina (Proteína)/metabolismo
8.
Chem Soc Rev ; 43(13): 4871-93, 2014 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-24759934

RESUMO

The OPEP coarse-grained protein model has been applied to a wide range of applications since its first release 15 years ago. The model, which combines energetic and structural accuracy and chemical specificity, allows the study of single protein properties, DNA-RNA complexes, amyloid fibril formation and protein suspensions in a crowded environment. Here we first review the current state of the model and the most exciting applications using advanced conformational sampling methods. We then present the current limitations and a perspective on the ongoing developments.


Assuntos
Amiloide/química , DNA/química , Modelos Moleculares , Proteínas/química , RNA/química
9.
Biochemistry ; 52(44): 7777-84, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24063785

RESUMO

Dystrophin is a large skeletal muscle protein located at the internal face of the plasma membrane and interacting with membrane phospholipids and a number of cytosolic proteins. Binding of neuronal nitric oxide synthase (nNOS) to dystrophin appears to be crucial for exercise-induced increases in blood supply in muscle cells. By contrast, utrophin, the developmental homologous protein of dystrophin, does not display nNOS interaction. Recent in vitro and in vivo experiments showed that the dystrophin region involved in nNOS binding is located in spectrin-like repeats R16 and R17 of its filamentous central domain. Using homology modeling and atomistic molecular dynamics simulation, we compared the structural organization and surface potentials of dystrophin, utrophin, and chimeric fragments, thus revisiting the dystrophin-nNOS binding region. Our simulation results are in good agreement with experimental data. They provide a three-dimensional representation of the repeats and give insight into the molecular organization of the regions involved in dystrophin-nNOS interaction. This study also further elucidates the physical properties crucial for this interaction, particularly the presence of a large hydrophobic patch. These results will be helpful to improving our understanding of the phenotypic features of patients bearing mutations in the nNOS-binding region of dystrophin.


Assuntos
Distrofina/química , Distrofina/metabolismo , Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico Sintase Tipo I/metabolismo , Motivos de Aminoácidos , Distrofina/genética , Humanos , Simulação de Dinâmica Molecular , Óxido Nítrico Sintase Tipo I/genética , Ligação Proteica , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA