Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Res ; 9(5): 514-528, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33622713

RESUMO

In addition to immunosuppression, it is generally accepted that myeloid-derived suppressor cells (MDSC) also support tumor angiogenesis. The tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO1) has been implicated in promoting neovascularization through its positioning as a key regulatory node between the inflammatory cytokines IFNγ and IL6. Here, we report that within the heterogeneous expanse of Gr-1+ MDSCs, both IDO1 expression and the ability to elicit neovascularization in vivo were associated with a minor subset of autofluorescent, CD11blo cells. IDO1 expression was further restricted to a discrete, CD11c and asialo-GM1 double-positive subpopulation of these cells, designated here as IDVCs (IDO1-dependent vascularizing cells), due to the dominant role that IDO1 activity in these cells was found to play in promoting neovascularization. Mechanistically, the induction of IDO1 in IDVCs provided a negative-feedback constraint on the antiangiogenic effect of host IFNγ by intrinsically signaling for the production of IL6 through general control nonderepressible 2 (GCN2)-mediated activation of the integrated stress response. These findings reveal fundamental molecular and cellular insights into how IDO1 interfaces with the inflammatory milieu to promote neovascularization.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/metabolismo , Interferon gama/metabolismo , Interleucina-6/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Inflamação/patologia , Interferon gama/genética , Interleucina-6/genética , Camundongos Endogâmicos BALB C , Camundongos Knockout , Metástase Neoplásica , Neoplasias/etiologia , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais
2.
Methods Enzymol ; 629: 219-233, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31727242

RESUMO

The essential amino acid tryptophan is catabolized by the first and rate-limiting enzyme of the kynurenine pathway, indoleamine 2,3-dioxygenase-1 (IDO1). IDO1 is implicated in several diseases including cancer, chronic infection, autoimmune disorders and neurodegenerative diseases. Antibodies that accurately recognize human IDO1 protein in situ in tissues are available, including clone 10.1 generated in our laboratory and now widely available through commercial sources (Muller, DuHadaway, Sutanto-Ward, Donover, & Prendergast, 2005). However, until recently, there were no antibodies available to accurately detect murine IDO1 protein in situ in preclinical mouse models of disease. Such probes are crucial to establish cellular mechanisms since IDO1 appears to act in different cell types depending on disease context, but reliable probes have been elusive in the field. Recently we addressed this issue with the development of IDO1 monoclonal antibody 4B7, the specificity of which was fully validated by a lack of binding to tissues derived from mice that are genetically deficient in IDO1. This antibody offers a reagent that is unique in the field for specifically recognizing the enzyme in murine tissues, addressing the acute need for a reliable tool to conduct immunohistology in preclinical disease models.


Assuntos
Anticorpos Monoclonais/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/análise , Neoplasias/patologia , Coloração e Rotulagem/métodos , Animais , Anticorpos Monoclonais/metabolismo , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática/métodos , Técnica Indireta de Fluorescência para Anticorpo/métodos , Humanos , Hibridomas , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Cinurenina/metabolismo , Camundongos , Microscopia de Fluorescência/métodos , Neoplasias/imunologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Triptofano/metabolismo
3.
J Cell Biochem ; 120(7): 12051-12062, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30809852

RESUMO

Meglumine is a methylamino derivative of sorbitol that is an approved drug excipient. Recent preclinical studies suggest that administration of high-dose oral meglumine can exert beneficial medicinal effects to treat diabetes, obesity, and fatty liver disease (NAFLD/nonalcoholic steatohepatitis [NASH]). Here we address gaps in knowledge about the pharmacology and toxicology of this substance administered at high concentrations to explore its medicinal potential. We observed that high-dose meglumine limited secretion of proinflammatory cytokines and cell adhesion molecules from activated human THP-1 or murine RAW264.7 monocytes. Preclinical pharmacokinetic analysis in Swiss mice confirmed that meglumine was orally available. Informed by this data, oral doses of 18 to 75 mM meglumine were administered ad libitum in the drinking water of Sprague-Dawley rats and two cohorts of C57BL/6 mice housed in different vivariums. In a 32-week study, urinary isoprostane levels trended lower in subjects consistent with the possibility of anti-inflammatory effects. In full lifespan studies, there was no detrimental effect on longevity. Heart function evaluated in C57BL/6 mice using an established noninvasive cardiac imaging system showed no detrimental effects on ejection fraction, fractional shortening, left ventricle function or volume, and cardiac output in mice up to 15-month old, with a potential positive trend in heart function noted in elderly mice consistent with earlier reported benefits on muscle stamina. Finally, in a transgenic model of inflammation-associated skin carcinogenesis, the incidence, number, and growth of skin tumors trended lower in subjects receiving meglumine. Overall, the evidence obtained illustrating the long-range safety of high-dose oral meglumine support the rationale for its evaluation as a low-cost modality to limit diabetes, hypertriglyceridemia, and NAFLD/NASH.

4.
J Biol Chem ; 294(12): 4477-4487, 2019 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-30692199

RESUMO

Alzheimer's disease (AD) is pathologically characterized by the deposition of the ß-amyloid (Aß) peptide in senile plaques in the brain, leading to neuronal dysfunction and eventual decline in cognitive function. Genome-wide association studies have identified the bridging integrator 1 (BIN1) gene within the second most significant susceptibility locus for late-onset AD. BIN1 is a member of the amphiphysin family of proteins and has reported roles in the generation of membrane curvature and endocytosis. Endocytic dysfunction is a pathological feature of AD, and endocytosis of the amyloid precursor protein is an important step in its subsequent cleavage by ß-secretase (BACE1). In vitro evidence implicates BIN1 in endosomal sorting of BACE1 and Aß generation in neurons, but a role for BIN1 in this process in vivo is yet to be described. Here, using biochemical and immunohistochemistry analyses we report that a 50% global reduction of BIN1 protein levels resulting from a single Bin1 allele deletion in mice does not change BACE1 levels or localization in vivo, nor does this reduction alter the production of endogenous murine Aß in nontransgenic mice. Furthermore, we found that reduction of BIN1 levels in the 5XFAD mouse model of amyloidosis does not alter Aß deposition nor behavioral deficits associated with cerebral amyloid burden. Finally, a conditional BIN1 knockout in excitatory neurons did not alter BACE1, APP, C-terminal fragments derived from BACE1 cleavage of APP, or endogenous Aß levels. These results indicate that BIN1 function does not regulate Aß generation in vivo.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Predisposição Genética para Doença , Proteínas do Tecido Nervoso/genética , Proteínas Supressoras de Tumor/genética , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases/metabolismo , Encéfalo/metabolismo , Modelos Animais de Doenças , Endocitose , Endossomos/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout
5.
J Cell Biochem ; 120(6): 9381-9391, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30536763

RESUMO

Neovascularization in cancer or retinopathy is driven by pathological changes that foster abnormal sprouting of endothelial cells. Mouse genetic studies indicate that the stress-induced small GTPase RhoB is dispensable for normal physiology but required for pathogenic angiogenesis. In diabetic retinopathy, retinopathy of prematurity (ROP) or age-related wet macular degeneration (AMD), progressive pathologic anatomic changes and ischemia foster neovascularization are characterized by abnormal sprouting of endothelial cells. This process is driven by the angiogenic growth factor VEGF, which induces and supports the formation of new blood vessels. While injectable biologics targeting VEGF have been used to treat these pathological conditions, many patients respond poorly, prompting interest in other types of mechanism-based therapy. Here we report the preclinical efficacy of a monoclonal antibody that specifically targets RhoB, a signaling molecule that is genetically dispensable for normal physiology but required for pathogenic retinal angiogenesis. In murine models of proliferative retinal angiogenesis or oxygen-induced retinopathy, administering a monoclonal RhoB antibody (7F7) was sufficient to block neoangiogenesis or avascular pathology, respectively. Our findings offer preclinical proof of concept for antibody targeting of RhoB to limit diabetic retinopathy, ROP or wet AMD and perhaps other diseases of neovasculogenesis such as hemangioma or hemangiosarcoma nonresponsive to existing therapies.


Assuntos
Anticorpos/uso terapêutico , Retinopatia Diabética/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Retiniana/genética , Proteína rhoB de Ligação ao GTP/genética , Animais , Anticorpos/genética , Anticorpos/imunologia , Retinopatia Diabética/genética , Retinopatia Diabética/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Humanos , Degeneração Macular/tratamento farmacológico , Degeneração Macular/genética , Degeneração Macular/patologia , Camundongos , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/patologia , Oxigênio/metabolismo , Retina/metabolismo , Retina/patologia , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/patologia , Retinopatia da Prematuridade/tratamento farmacológico , Retinopatia da Prematuridade/genética , Retinopatia da Prematuridade/patologia , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/genética , Proteína rhoB de Ligação ao GTP/antagonistas & inibidores , Proteína rhoB de Ligação ao GTP/imunologia
6.
Trends Cancer ; 4(1): 38-58, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29413421

RESUMO

We discuss how small-molecule inhibitors of the tryptophan (Trp) catabolic enzyme indoleamine 2,3-dioxygenase (IDO) represent a vanguard of new immunometabolic adjuvants to safely enhance the efficacy of cancer immunotherapy, radiotherapy, or 'immunogenic' chemotherapy by leveraging responses to tumor neoantigens. IDO inhibitors re-program inflammatory processes to help clear tumors by blunting tumor neovascularization and restoring immunosurveillance. Studies of regulatory and effector pathways illuminate IDO as an inflammatory modifier. Recent work suggests that coordinate targeting of the Trp catabolic enzymes tryptophan 2,3-dioxygenase (TDO) and IDO2 may also safely broaden efficacy. Understanding IDO inhibitors as adjuvants to turn immunologically 'cold' tumors 'hot' can seed new concepts in how to improve the efficacy of cancer therapy while limiting collateral damage.


Assuntos
Reprogramação Celular/genética , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Neoplasias/terapia , Reprogramação Celular/imunologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Inflamação/imunologia , Inflamação/patologia , Neoplasias/genética , Neoplasias/imunologia , Bibliotecas de Moléculas Pequenas/uso terapêutico , Triptofano/metabolismo , Triptofano Oxigenase/antagonistas & inibidores , Triptofano Oxigenase/imunologia
7.
Oncotarget ; 8(47): 81754-81775, 2017 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-29137220

RESUMO

The cyclin D1 gene encodes the regulatory subunit of a holoenzyme that drives cell autonomous cell cycle progression and proliferation. Herein we show cyclin D1 abundance is increased >30-fold in the stromal fibroblasts of patients with invasive breast cancer, associated with poor outcome. Cyclin D1 transformed hTERT human fibroblast to a cancer-associated fibroblast phenotype. Stromal fibroblast expression of cyclin D1 (cyclin D1Stroma) in vivo, enhanced breast epithelial cancer tumor growth, restrained apoptosis, and increased autophagy. Cyclin D1Stroma had profound effects on the breast tumor microenvironment increasing the recruitment of F4/80+ and CD11b+ macrophages and increasing angiogenesis. Cyclin D1Stroma induced secretion of factors that promoted expansion of stem cells (breast stem-like cells, embryonic stem cells and bone marrow derived stem cells). Cyclin D1Stroma resulted in increased secretion of proinflammatory cytokines (CCL2, CCL7, CCL11, CXCL1, CXCL5, CXCL9, CXCL12), CSF (CSF1, GM-CSF1) and osteopontin (OPN) (30-fold). OPN was induced by cyclin D1 in fibroblasts, breast epithelial cells and in the murine transgenic mammary gland and OPN was sufficient to induce stem cell expansion. These results demonstrate that cyclin D1Stroma drives tumor microenvironment heterocellular signaling, promoting several key hallmarks of cancer.

8.
Dis Model Mech ; 10(11): 1313-1322, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28882929

RESUMO

During the development of autoimmune disease, a switch occurs in the antibody repertoire of B cells so that the production of pathogenic rather than non-pathogenic autoantibodies is enabled. However, there is limited knowledge concerning how this pivotal step occurs. Here, we present genetic and pharmacological evidence of a positive modifier function for the vesicular small GTPase RhoB in specifically mediating the generation of pathogenic autoantibodies and disease progression in the K/BxN preclinical mouse model of inflammatory arthritis. Genetic deletion of RhoB abolished the production of pathogenic autoantibodies and ablated joint inflammation in the model. Similarly, administration of a novel RhoB-targeted monoclonal antibody was sufficient to ablate autoantibody production and joint inflammation. In the MRL/lpr mouse model of systemic lupus erythematosus (SLE), another established preclinical model of autoimmune disease associated with autoantibody production, administration of the anti-RhoB antibody also reduced serum levels of anti-dsDNA antibodies. Notably, the therapeutic effects of RhoB blockade reflected a selective deficiency in response to self-antigens, insofar as RhoB-deficient mice and mice treated with anti-RhoB immunoglobulin (Ig) both mounted comparable productive antibody responses after immunization with a model foreign antigen. Overall, our results highlight a newly identified function for RhoB in supporting the specific production of pathogenic autoantibodies, and offer a preclinical proof of concept for use of anti-RhoB Ig as a disease-selective therapy to treat autoimmune disorders driven by pathogenic autoantibodies.


Assuntos
Artrite Reumatoide/imunologia , Autoanticorpos/biossíntese , Lúpus Eritematoso Sistêmico/imunologia , Proteína rhoB de Ligação ao GTP/metabolismo , Animais , Artrite Reumatoide/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Mediadores da Inflamação/metabolismo , Lúpus Eritematoso Sistêmico/sangue , Linfócitos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos MRL lpr , Camundongos Transgênicos , Proteína rhoB de Ligação ao GTP/deficiência
9.
Clin Immunol ; 179: 8-16, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28223071

RESUMO

Rheumatoid arthritis (RA) is a debilitating inflammatory autoimmune disease with no known cure. Recently, we identified the immunomodulatory enzyme indoleamine-2,3-dioxygenase 2 (IDO2) as an essential mediator of autoreactive B and T cell responses driving RA. However, therapeutically targeting IDO2 has been challenging given the lack of small molecules that specifically inhibit IDO2 without also affecting the closely related IDO1. In this study, we develop a novel monoclonal antibody (mAb)-based approach to therapeutically target IDO2. Treatment with IDO2-specific mAb alleviated arthritis in two independent preclinical arthritis models, reducing autoreactive T and B cell activation and recapitulating the strong anti-arthritic effect of genetic IDO2 deficiency. Mechanistic investigations identified FcγRIIb as necessary for mAb internalization, allowing targeting of an intracellular antigen traditionally considered inaccessible to mAb therapy. Taken together, our results offer preclinical proof of concept for antibody-mediated targeting of IDO2 as a new therapeutic strategy to treat RA and other autoantibody-mediated diseases.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Animais , Anticorpos Monoclonais/farmacologia , Artrite Experimental/imunologia , Artrite Experimental/patologia , Artrite Reumatoide/induzido quimicamente , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Linfócitos B/imunologia , Feminino , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Linfonodos/citologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Knockout , Receptores de IgG/genética , Receptores de IgG/imunologia , Baço/citologia , Linfócitos T/imunologia , Articulações Tarsianas/efeitos dos fármacos , Articulações Tarsianas/patologia
10.
J Biomol Screen ; 20(10): 1294-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26195453

RESUMO

Ras homologous (Rho) family GTPases act as molecular switches controlling cell growth, movement, and gene expression by cycling between inactive guanosine diphosphate (GDP)- and active guanosine triphosphate (GTP)-bound conformations. Guanine nucleotide exchange factors (GEFs) positively regulate Rho GTPases by accelerating GDP dissociation to allow formation of the active, GTP-bound complex. Rho proteins are directly involved in cancer pathways, especially cell migration and invasion, and inhibiting GEFs holds potential as a therapeutic strategy to diminish Rho-dependent oncogenesis. Methods for measuring GEF activity suitable for high-throughput screening (HTS) are limited. We developed a simple, generic biochemical assay method for measuring GEF activity based on the fact that GDP dissociation is generally the rate-limiting step in the Rho GTPase catalytic cycle, and thus addition of a GEF causes an increase in steady-state GTPase activity. We used the Transcreener GDP Assay, which relies on selective immunodetection of GDP, to measure the GEF-dependent stimulation of steady-state GTP hydrolysis by small GTPases using Dbs (Dbl's big sister) as a GEF for Cdc42, RhoA, and RhoB. The assay is well suited for HTS, with a homogenous format and far red fluorescence polarization (FP) readout, and it should be broadly applicable to diverse Rho GEF/GTPase pairs.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Imunoensaio/métodos , Fatores de Troca de Nucleotídeo Guanina Rho/análise
11.
J Cell Biochem ; 116(11): 2541-51, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25939245

RESUMO

Non-compensated dilated cardiomyopathy (DCM) leading to death from heart failure is rising rapidly in developed countries due to aging demographics, and there is a need for informative preclinical models to guide the development of effective therapeutic strategies to prevent or delay disease onset. In this study, we describe a novel model of heart failure based on cardiac-specific deletion of the prototypical mammalian BAR adapter-encoding gene Bin1, a modifier of age-associated disease. Bin1 deletion during embryonic development causes hypertrophic cardiomyopathy and neonatal lethality, but there is little information on how Bin1 affects cardiac function in adult animals. Here we report that cardiomyocyte-specific loss of Bin1 causes age-associated dilated cardiomyopathy (DCM) beginning by 8-10 months of age. Echocardiographic analysis showed that Bin1 loss caused a 45% reduction in ejection fraction during aging. Younger animals rapidly developed DCM if cardiac pressure overload was created by transverse aortic constriction. Heterozygotes exhibited an intermediate phenotype indicating Bin1 is haplo-insufficient to sustain normal heart function. Bin1 loss increased left ventricle (LV) volume and diameter during aging, but it did not alter LV volume or diameter in hearts from heterozygous mice nor did it affect LV mass. Bin1 loss increased interstitial fibrosis and mislocalization of the voltage-dependent calcium channel Cav 1.2, and the lipid raft scaffold protein caveolin-3, which normally complexes with Bin1 and Cav 1.2 in cardiomyocyte membranes. Our findings show how cardiac deficiency in Bin1 function causes age- and stress-associated heart failure, and they establish a new preclinical model of this terminal cardiac disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/deficiência , Envelhecimento/genética , Cardiomiopatia Dilatada/genética , Miócitos Cardíacos/patologia , Proteínas do Tecido Nervoso/deficiência , Proteínas Supressoras de Tumor/deficiência , Animais , Cardiomiopatia Dilatada/fisiopatologia , Modelos Animais de Doenças , Camundongos , Camundongos Knockout , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos , Volume Sistólico
12.
Cancer Immunol Immunother ; 63(7): 721-35, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24711084

RESUMO

Genetic and pharmacological studies of indoleamine 2,3-dioxygenase (IDO) have established this tryptophan catabolic enzyme as a central driver of malignant development and progression. IDO acts in tumor, stromal and immune cells to support pathogenic inflammatory processes that engender immune tolerance to tumor antigens. The multifaceted effects of IDO activation in cancer include the suppression of T and NK cells, the generation and activation of T regulatory cells and myeloid-derived suppressor cells, and the promotion of tumor angiogenesis. Mechanistic investigations have defined the aryl hydrocarbon receptor, the master metabolic regulator mTORC1 and the stress kinase Gcn2 as key effector signaling elements for IDO, which also exerts a non-catalytic role in TGF-ß signaling. Small-molecule inhibitors of IDO exhibit anticancer activity and cooperate with immunotherapy, radiotherapy or chemotherapy to trigger rapid regression of aggressive tumors otherwise resistant to treatment. Notably, the dramatic antitumor activity of certain targeted therapeutics such as imatinib (Gleevec) in gastrointestinal stromal tumors has been traced in part to IDO downregulation. Further, antitumor responses to immune checkpoint inhibitors can be heightened safely by a clinical lead inhibitor of the IDO pathway that relieves IDO-mediated suppression of mTORC1 in T cells. In this personal perspective on IDO as a nodal mediator of pathogenic inflammation and immune escape in cancer, we provide a conceptual foundation for the clinical development of IDO inhibitors as a novel class of immunomodulators with broad application in the treatment of advanced human cancer.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Inflamação/imunologia , Neoplasias/enzimologia , Neoplasias/imunologia , Evasão Tumoral , Animais , Humanos , Tolerância Imunológica , Imunoterapia , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/enzimologia , Neoplasias/patologia , Transdução de Sinais
13.
PLoS One ; 9(2): e90031, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587200

RESUMO

Metabolic syndrome, diabetes and diabetes complications pose a growing medical challenge worldwide, accentuating the need of safe and effective strategies for their clinical management. Here we present preclinical evidence that the sorbitol derivative meglumine (N-methyl-D-glucamine) can safely protect against several features of metabolic syndrome and diabetes, as well as elicit enhancement in muscle stamina. Meglumine is a compound routinely used as an approved excipient to improve drug absorption that has not been ascribed any direct biological effects in vivo. Normal mice (SV129) administered 18 mM meglumine orally for six weeks did not display any gastrointestinal or other observable adverse effects, but had a marked effect on enhancing muscle stamina and at longer times in limiting weight gain. In the established KK.Cg-Ay/J model of non-insulin dependent diabetes, oral administration of meglumine significantly improved glycemic control and significantly lowered levels of plasma and liver triglycerides. Compared to untreated control animals, meglumine reduced apparent diabetic nephropathy. Sorbitol can improve blood glucose uptake by liver and muscle in a manner associated with upregulation of the AMPK-related enzyme SNARK, but with undesirable gastrointestinal side effects not seen with meglumine. In murine myoblasts, we found that meglumine increased steady-state SNARK levels in a dose-dependent manner more potently than sorbitol. Taken together, these findings provide support for the clinical evaluation of meglumine as a low-cost, safe supplement offering the potential to improve muscle function, limit metabolic syndrome and reduce diabetic complications.


Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Meglumina/farmacologia , Síndrome Metabólica/tratamento farmacológico , Substâncias Protetoras/farmacologia , Animais , Glicemia , Linhagem Celular , Diabetes Mellitus Tipo 2/metabolismo , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/metabolismo , Modelos Animais de Doenças , Feminino , Meglumina/administração & dosagem , Síndrome Metabólica/metabolismo , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Mioblastos/efeitos dos fármacos , Mioblastos/metabolismo , Tamanho do Órgão/efeitos dos fármacos , Substâncias Protetoras/administração & dosagem , Proteínas Serina-Treonina Quinases/metabolismo , Triglicerídeos/sangue
14.
J Immunol ; 192(3): 1231-40, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24391212

RESUMO

Dendritic cells (DCs) are professional APCs that have a role in the initiation of adaptive immune responses and tolerance. Among the tolerogenic mechanisms, the expression of the enzyme IDO1 represents an effective tool to generate T regulatory cells. In humans, different DC subsets express IDO1, but less is known about the IDO1-related enzyme IDO2. In this study, we found a different pattern of expression and regulation between IDO1 and IDO2 in human circulating DCs. At the protein level, IDO1 is expressed only in circulating myeloid DCs (mDCs) and is modulated by PGE2, whereas IDO2 is expressed in both mDCs and plasmacytoid DCs and is not modulated by PGE2. In healthy subjects, IDO1 expression requires the presence of PGE2 and needs continuous transcription and translation, whereas IDO2 expression is constitutive, independent from suppressor of cytokine signaling 3 activity. Conversely, in patients suffering from inflammatory arthritis, circulating DCs express both IDO1 and IDO2. At the functional level, both mDCs and plasmacytoid DCs generate T regulatory cells through an IDO1/IDO2-dependent mechanism. We conclude that, in humans, whereas IDO1 provides an additional mechanism of tolerance induced by proinflammatory mediators, IDO2 is stably expressed in steady-state conditions and may contribute to the homeostatic tolerogenic capacity of DCs.


Assuntos
Células Dendríticas/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/fisiologia , Linfócitos T Reguladores/imunologia , Artrite Psoriásica/imunologia , Artrite Psoriásica/patologia , Artrite Reumatoide/imunologia , Artrite Reumatoide/patologia , Células Cultivadas , Células Dendríticas/classificação , Células Dendríticas/enzimologia , Dinoprostona/farmacologia , Dinoprostona/fisiologia , Indução Enzimática/efeitos dos fármacos , Homeostase , Humanos , Tolerância Imunológica , Indolamina-Pirrol 2,3,-Dioxigenase/biossíntese , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Monócitos/citologia , Monócitos/efeitos dos fármacos , Especificidade de Órgãos , Biossíntese de Proteínas/efeitos dos fármacos , Interferência de RNA , RNA Interferente Pequeno/farmacologia , Espondilite Anquilosante/imunologia , Espondilite Anquilosante/patologia , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/antagonistas & inibidores , Transcrição Gênica/efeitos dos fármacos , Triptofano/metabolismo , Regulação para Cima/efeitos dos fármacos
15.
J Cell Biochem ; 115(2): 391-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24123235

RESUMO

Indoleamine 2,3-dioxygenase-1 (IDO1) catabolizes the essential amino acid tryptophan, acting as a modifier of inflammation and immune tolerance. Recent work has implicated IDO1 in many human diseases, including in cancer, chronic infection, autoimmune disorders, and neurodegenerative disease, stimulating a major surge in preclinical and clinical studies of its pathogenic functions. In the mouse, IDO1 is expressed widely but in situ detection of the enzyme in murine tissues has been unreliable due to the lack of specific antibodies that do not also react with tissues from animals that are genetically deficient in IDO1. Such probes are crucial to establish cellular mechanisms since IDO1 appears to act in different cell types depending on disease context, but reliable probes have been elusive in the field. In this report, we address this issue with the development of IDO1 monoclonal antibody 4B7 which specifically recognizes the murine enzyme in tissue sections, offering a reliable tool for immunohistology in preclinical disease models.


Assuntos
Tolerância Imunológica/genética , Indolamina-Pirrol 2,3,-Dioxigenase/isolamento & purificação , Inflamação/genética , Animais , Anticorpos Monoclonais/imunologia , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/imunologia , Inflamação/enzimologia , Camundongos , Distribuição Tecidual , Triptofano/metabolismo
16.
Cancer Discov ; 2(8): 722-35, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22822050

RESUMO

UNLABELLED: Indoleamine 2,3-dioxygenase (IDO) enzyme inhibitors have entered clinical trials for cancer treatment based on preclinical studies, indicating that they can defeat immune escape and broadly enhance other therapeutic modalities. However, clear genetic evidence of the impact of IDO on tumorigenesis in physiologic models of primary or metastatic disease is lacking. Investigating the impact of Ido1 gene disruption in mouse models of oncogenic KRAS-induced lung carcinoma and breast carcinoma-derived pulmonary metastasis, we have found that IDO deficiency resulted in reduced lung tumor burden and improved survival in both models. Micro-computed tomographic (CT) imaging further revealed that the density of the underlying pulmonary blood vessels was significantly reduced in Ido1-nullizygous mice. During lung tumor and metastasis outgrowth, interleukin (IL)-6 induction was greatly attenuated in conjunction with the loss of IDO. Biologically, this resulted in a consequential impairment of protumorigenic myeloid-derived suppressor cells (MDSC), as restoration of IL-6 recovered both MDSC suppressor function and metastasis susceptibility in Ido1-nullizygous mice. Together, our findings define IDO as a prototypical integrative modifier that bridges inflammation, vascularization, and immune escape to license primary and metastatic tumor outgrowth. SIGNIFICANCE: This study provides preclinical, genetic proof-of-concept that the immunoregulatory enzyme IDO contributes to autochthonous carcinoma progression and to the creation of a metastatic niche. IDO deficiency in vivo negatively impacted both vascularization and IL-6­dependent, MDSC-driven immune escape, establishing IDO as an overarching factor directing the establishment of a protumorigenic environment.


Assuntos
Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Neoplasias Pulmonares/enzimologia , Adenocarcinoma/irrigação sanguínea , Adenocarcinoma/enzimologia , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Progressão da Doença , Genes ras , Células HL-60 , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/deficiência , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/tratamento farmacológico , Inflamação/enzimologia , Interleucina-6/biossíntese , Estimativa de Kaplan-Meier , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Metástase Neoplásica , Neovascularização Patológica/enzimologia , Análise de Sobrevida , Células U937
17.
Cancer Biol Ther ; 12(12): 1050-8, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22157149

RESUMO

Indoleamine 2,3-dioxygenase (IDO) modifies adaptive immunity, in part by determining the character of inflammatory responses in the tissue microenvironment. Small molecule inhibitors of IDO are being developed to treat cancer, chronic infections and other diseases, so the systemic effects of IDO disruption on inflammatory phenomena may influence the design and conduct of early phase clinical investigations of this new class of therapeutic agents. Here, we report cardiac and gastrointestinal phenotypes observed in IDO deficient mice that warrant consideration in planned assessments of the safety risks involved in clinical development of IDO inhibitors. Calcification of the cardiac endometrium proximal to the right ventricle was a sexually dimorphic strain-specific phenotype with ~30% penetrance in BALB/c mice lacking IDO. Administration of complete Freund's adjuvant containing Toll-like receptor ligands known to induce IDO caused acute pancreatitis in IDO deficient mice, with implications for the design of planned combination studies of IDO inhibitors with cancer vaccines. In an established model of hyperlipidemia, IDO deficiency caused a dramatic elevation in levels of serum triglycerides. In the large intestine, IDO loss only slightly increased sensitivity to induction of acute colitis, but it markedly elevated tumor incidence, multiplicity and staging during inflammatory colon carcinogenesis. Together, our findings suggest potential cardiac and gastrointestinal risks of IDO inhibitors that should be monitored in patients as this new class of drugs enter early clinical development.


Assuntos
Gastroenteropatias/enzimologia , Cardiopatias/enzimologia , Indolamina-Pirrol 2,3,-Dioxigenase/deficiência , Animais , Cálcio/metabolismo , Transformação Celular Neoplásica/metabolismo , Colesterol/sangue , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Endométrio/metabolismo , Feminino , Adjuvante de Freund/efeitos adversos , Adjuvante de Freund/farmacologia , Gastroenteropatias/metabolismo , Gastroenteropatias/patologia , Cardiopatias/metabolismo , Cardiopatias/patologia , Hiperlipidemias/sangue , Hiperlipidemias/enzimologia , Hiperlipidemias/genética , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Inflamação/enzimologia , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pancreatite/induzido quimicamente , Pancreatite/enzimologia , Pancreatite/genética , Caracteres Sexuais
18.
J Cell Biochem ; 112(6): 1572-84, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21344485

RESUMO

The small GTPase RhoB regulates endocytic trafficking of receptor tyrosine kinases (RTKs) and the non-receptor kinases Src and Akt. While receptor-mediated endocytosis is critical for signaling processes driving cell migration, mechanisms that coordinate endocytosis with the propagation of migratory signals remain relatively poorly understood. In this study, we show that RhoB is essential for activation and trafficking of the key migratory effectors Cdc42 and Rac in mediating the ability of platelet-derived growth factor (PDGF) to stimulate cell movement. Stimulation of the PDGF receptor-ß on primary vascular smooth muscle cells (VSMCs) results in RhoB-dependent trafficking of endosome-bound Cdc42 from the perinuclear region to the cell periphery, where the RhoGEF Vav2 and Rac are also recruited to drive formation of circular dorsal and peripheral ruffles necessary for cell migration. Our findings identify a novel RhoB-dependent endosomal trafficking pathway that integrates RTK endocytosis with Cdc42/Rac localization and cell movement.


Assuntos
Movimento Celular/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Animais , Western Blotting , Células Cultivadas , Imunofluorescência , Camundongos , Camundongos Knockout , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/citologia , Miócitos de Músculo Liso/metabolismo , Proteína rhoB de Ligação ao GTP/genética
19.
J Surg Res ; 163(2): e113-22, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20538289

RESUMO

BACKGROUND: Increased expression of cyclooxygenase (COX-2) contributes to atherosclerosis. Recent studies suggest that COX-2 inhibitors prevent early plaque development but their effects on established lesions are less clear, while the statins promote plaque stability. The purpose of this study is to investigate whether administering a combination of a COX-2 inhibitor with a statin drug alters plaque progression in apo E-/- mice. MATERIALS AND METHODS: Apo E-/- mice were fed a Western diet from 6 to 26 wk of age. At 26 wk, the Western diets supplemented with atorvastatin, celecoxib, or atorvastatin plus celecoxib were given for an additional 12 wk. RESULTS: When the mice were 38 wk of age, the total area occupied by the atherosclerotic lesion was 53% less in the mice fed the combination of atorvastatin + celecoxib P ≤ 0.05) than that of the apo E-/- mice fed the Western diet alone, atorvastatin alone, or celecoxib alone. The decreased extent of atherosclerosis observed in the apo E-/- mice fed the combination of drugs was associated with reduced levels of prostaglandin (PG) E(2,) decreased protein expression of metalloproteinase (MMP)-9, macrophage chemotactic protein (MCP-1), and COX 2, and decreased staining for MMP-9, F4-80 (a marker for macrophages), and vascular cell adhesion molecule (VCAM). CONCLUSION: This study indicates that using statins with a COX-2 inhibitor reduced the extent of atherosclerosis and inflammatory/cell adhesion molecule levels in the apo E-/- mouse model.


Assuntos
Aterosclerose/tratamento farmacológico , Inibidores de Ciclo-Oxigenase 2/administração & dosagem , Ácidos Heptanoicos/administração & dosagem , Inibidores de Hidroximetilglutaril-CoA Redutases/administração & dosagem , Pirazóis/administração & dosagem , Pirróis/administração & dosagem , Sulfonamidas/administração & dosagem , Animais , Apolipoproteínas E/fisiologia , Atorvastatina , Celecoxib , Quimiocina CCL2/sangue , Ciclo-Oxigenase 2/sangue , Dinoprostona/sangue , Progressão da Doença , Quimioterapia Combinada , Imuno-Histoquímica , Masculino , Metaloproteinase 9 da Matriz/sangue , Camundongos , Camundongos Endogâmicos C57BL , Molécula 1 de Adesão de Célula Vascular/genética
20.
Endocr Pract ; 14(9): 1075-83, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19158046

RESUMO

OBJECTIVE: To identify triggers for islet neogenesis in humans that may lead to new treatments that address the underlying mechanism of disease for patients with type 1 or type 2 diabetes. METHODS: In an effort to identify bioactive human peptide sequences that might trigger islet neogenesis, we evaluated amino acid sequences within a variety of mammalian pancreas-specific REG genes. We evaluated GenBank, the Basic Local Alignment Search Tool algorithm, and all available proteomic databases and developed large-scale protein-to-protein interaction maps. Studies of peptides of interest were conducted in human pancreatic ductal tissue, followed by investigations in mice with streptozocin-induced diabetes. RESULTS: Our team has defined a 14-amino acid bioactive peptide encoded by a portion of the human REG3a gene we termed Human proIslet Peptide (HIP), which is well conserved among many mammals. Treatment of human pancreatic ductal tissue with HIP stimulated the production of insulin. In diabetic mice, administration of HIP improved glycemic control and significantly increased islet number. Bioinformatics analysis, coupled with biochemical interaction studies in a human pancreatic cell line, identified the human exostoses-like protein 3 (EXTL3) as a HIP-binding protein. HIP enhanced EXTL3 translocation from the membrane to the nucleus, in support of a model whereby EXTL3 mediates HIP signaling for islet neogenesis. CONCLUSION: Our data suggest that HIP may be a potential stimulus for islet neogenesis and that the differentiation of new islets is a process distinct from beta cell proliferation within existing islets. Human clinical trials are soon to commence to determine the effect of HIP on generating new islets from one's own pancreatic progenitor cells.


Assuntos
Diferenciação Celular , Ilhotas Pancreáticas/fisiologia , Fragmentos de Peptídeos/isolamento & purificação , Fragmentos de Peptídeos/fisiologia , Regeneração , Sequência de Aminoácidos , Animais , Antígenos de Neoplasias/química , Biomarcadores Tumorais/química , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Bases de Dados de Proteínas , Diabetes Mellitus Experimental/patologia , Avaliação Pré-Clínica de Medicamentos , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/patologia , Lectinas Tipo C/química , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , N-Acetilglucosaminiltransferases/metabolismo , Proteínas Associadas a Pancreatite , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Mapeamento de Interação de Proteínas , Regeneração/efeitos dos fármacos , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA