Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Cancer Discov ; 13(7): 1720-1747, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37012202

RESUMO

Although transcription factor CCAAT-enhancer binding protein α (C/EBPα) is critical for normal and leukemic differentiation, its role in cell and metabolic homeostasis is largely unknown in cancer. Here, multiomics analyses uncovered a coordinated activation of C/EBPα and Fms-like tyrosine kinase 3 (FLT3) that increased lipid anabolism in vivo and in patients with FLT3-mutant acute myeloid leukemia (AML). Mechanistically, C/EBPα regulated the fatty acid synthase (FASN)-stearoyl-CoA desaturase (SCD) axis to promote fatty acid (FA) biosynthesis and desaturation. We further demonstrated that FLT3 or C/EBPα inactivation decreased monounsaturated FA incorporation to membrane phospholipids through SCD downregulation. Consequently, SCD inhibition enhanced susceptibility to lipid redox stress that was exploited by combining FLT3 and glutathione peroxidase 4 inhibition to trigger lipid oxidative stress, enhancing ferroptotic death of FLT3-mutant AML cells. Altogether, our study reveals a C/EBPα function in lipid homeostasis and adaptation to redox stress, and a previously unreported vulnerability of FLT3-mutant AML to ferroptosis with promising therapeutic application. SIGNIFICANCE: FLT3 mutations are found in 30% of AML cases and are actionable by tyrosine kinase inhibitors. Here, we discovered that C/EBPα regulates FA biosynthesis and protection from lipid redox stress downstream mutant-FLT3 signaling, which confers a vulnerability to ferroptosis upon FLT3 inhibition with therapeutic potential in AML. This article is highlighted in the In This Issue feature, p. 1501.


Assuntos
Ferroptose , Leucemia Mieloide Aguda , Humanos , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo , Ácidos Graxos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Mutação , Estresse Oxidativo , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral
3.
FEBS J ; 289(18): 5516-5526, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-34817127

RESUMO

The 4th International meeting Metabolism and Cancer initially programed to take place in Bordeaux (France) was held virtually on May 27-29, 2021. The three-day event was followed by around 600 participants daily from 47 countries around the world. The meeting hosted 21 speakers including selected talks and a keynote lecture from the Nobel Prize winner Sir Peter J. Ratcliffe (Oxford, UK). Presentations and discussions were divided in four scientific sessions: (a) Redox and energy metabolism (b) Redox and hypoxia (c) Metabolic profiling and epigenetic control and (d) Signalling, fuelling and metabolism in cancer and a general public session on cancer and nutrition. This report summarises the presentations and outcomes of the 4th annual Metabolism and Cancer symposium. We provide here a summary of the scientific highlights of this exciting meeting.


Assuntos
Metabolismo , Neoplasias , Humanos , Neoplasias/metabolismo , Sociedades Médicas
4.
Cancers (Basel) ; 13(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34680392

RESUMO

Relapses and resistance to therapeutic agents are major barriers in the treatment of acute myeloid leukemia (AML) patients. These unfavorable outcomes emphasize the need for new strategies targeting drug-resistant cells. As IDH mutations are present in the preleukemic stem cells and systematically conserved at relapse, targeting IDH mutant cells could be essential to achieve a long-term remission in the IDH mutant AML subgroup. Here, using a panel of human AML cell lines and primary AML patient specimens harboring IDH mutations, we showed that the production of an oncometabolite (R)-2-HG by IDH mutant enzymes induces vitamin D receptor-related transcriptional changes, priming these AML cells to differentiate with pharmacological doses of ATRA and/or VD. This activation occurs in a CEBPα-dependent manner. Accordingly, our findings illuminate potent and cooperative effects of IDH mutations and the vitamin D receptor pathway on differentiation in AML, revealing a novel therapeutic approach easily transferable/immediately applicable to this subgroup of AML patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA