Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(7): e0305545, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38990906

RESUMO

BACKGROUND: Non-invasive neurostimulation like muscle tendon vibration (VIB) and transcranial magnetic stimulation (TMS) can provide valuable insights on mechanisms underlying sensorimotor dysfunctions. However, their feasibility in the context of painful musculoskeletal disorders like shoulder impingement syndrome (SIS) remain uncertain. METHODS: The present work used a case series design including 15 participants with SIS, as well as a secondary group-based analysis comparing participants with SIS to 15 healthy counterparts. Proprioceptive processing was tested by VIB-induced kinesthetic illusions of shoulder abduction, and TMS tested corticospinal excitability of the upper trapezius. Detailed individual data were collected, including any technical challenges and feasibility issues encountered. RESULTS: VIB was in general well-tolerated and elicited a perceptible kinesthetic illusion in 13 participants with SIS and 14 controls. TMS presented with several challenges related to discomfort, fear-related behaviors, technical problems and high motor thresholds, especially in participants with SIS. It was only possible to collect all TMS measures in 5 participants with SIS (for both the painful and non/less-painful sides), in 7 controls on their dominant side and 10 controls on the non-dominant side. The only significant group-based analysis was a lower illusion speed/amplitude on the painful versus non-painful side in persons with SIS (p = 0.035). CONCLUSION: Our study provides preliminary data on challenges encountered with TMS and VIB of trunk/proximal muscle in persons with SIS and healthy counterparts. It might help future studies to better address those challenges beforehand and improve the overall feasibility and impact of neurostimulation tools in musculoskeletal disorders.


Assuntos
Síndrome de Colisão do Ombro , Tendões , Estimulação Magnética Transcraniana , Vibração , Humanos , Estimulação Magnética Transcraniana/métodos , Feminino , Masculino , Síndrome de Colisão do Ombro/terapia , Síndrome de Colisão do Ombro/fisiopatologia , Pessoa de Meia-Idade , Vibração/uso terapêutico , Adulto , Tendões/fisiopatologia , Estudos de Casos e Controles , Propriocepção/fisiologia
2.
J Neurophysiol ; 130(5): 1118-1125, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37706230

RESUMO

Despite being studied for more than 50 years, the neurophysiological mechanisms underlying vibration (VIB)-induced kinesthetic illusions are still unclear. The aim of this study was to investigate how corticospinal excitability tested by transcranial magnetic stimulation (TMS) is modulated during VIB-induced illusions. Twenty healthy adults received vibration over wrist flexor muscles (80 Hz, 1 mm, 10 s). TMS was applied over the primary motor cortex representation of wrist extensors at 120% of resting motor threshold in four random conditions (10 trials/condition): baseline (without VIB), 1 s, 5 s, and 10 s after VIB onset. Means of motor-evoked potential (MEP) amplitudes and latencies were calculated. Statistical analysis found a significant effect of conditions (stimulation timings) on MEP amplitudes (P = 0.035). Paired-comparisons demonstrated lower corticospinal excitability during VIB at 1 s compared with 5 s (P = 0.025) and 10 s (P = 0.003), although none of them differed from baseline values. Results suggest a time-specific modulation of corticospinal excitability in muscles antagonistic to those vibrated, i.e., muscles involved in the perceived movement. An early decrease of excitability was observed at 1 s followed by a stabilization of values near baseline at subsequent time points. At 1 s, the illusion is not yet perceived or not strong enough to upregulate corticospinal networks coherent with the proprioceptive input. Spinal mechanisms, such as reciprocal inhibition, could also contribute to lower the corticospinal drive of nonvibrated muscles in short period before the illusion emerges. Our results suggest that neuromodulatory effects of VIB are likely time-dependent, and that future work is needed to further investigate underlying mechanisms.NEW & NOTEWORTHY The modulation of corticospinal excitability when perceiving a vibration (VIB)-induced kinesthetic illusion evolves dynamically over time. This modulation might be linked to the delayed occurrence and progressive increase in strength of the illusory perception in the first seconds after VIB start. Different spinal/cortical mechanisms could be at play during VIB, depending on the tested muscle, presence/absence of an illusion, and the specific timing at which corticospinal drive is tested pre/post VIB.


Assuntos
Ilusões , Adulto , Humanos , Ilusões/fisiologia , Cinestesia/fisiologia , Vibração , Músculo Esquelético/fisiologia , Propriocepção/fisiologia , Estimulação Magnética Transcraniana/métodos , Potencial Evocado Motor/fisiologia , Eletromiografia , Tratos Piramidais/fisiologia
3.
PLoS One ; 18(1): e0280835, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36689435

RESUMO

BACKGROUND: The vibration-induced postural reaction paradigm (VIB-PR) offers a unique way for investigating sensorimotor control mechanisms. Measures of VIB-PR are usually calculated from the whole VIB period, yet recent evidence proposed that distinctive mechanisms are likely at play between the early vs. later phases of the postural reaction. OBJECTIVES: The present work verified if spatiotemporal analyses of center of pressure (COP) displacements can detect differences between these early/later phases of VIB-PR. Also, we further characterized the intra/inter-individual variability of COP measurements, since the underlying variability of VIB-PR remains largely unexplored. METHODS: Twenty young volunteers realized two experimental conditions of bipodal stance with eyes closed: (i) bilateral VIB of tibialis anterior (TIB) and (ii) Achilles' (ACH) tendons. Each condition consisted of five trials and lasted 30 s as follows: 10 s baseline, 10 s VIB and 10 s post-VIB. Linear COP variables (antero-posterior (AP) amplitude & velocity) were computed for both VIB and post-VIB periods using the following time-windows: early 2 s, the later 8 s and the whole 10 s duration. Intra- and inter-individual variability were respectively estimated using the standard error of the measurement and the coefficient of variation. Both variability metrics were obtained using five vs. the first three trials. RESULTS: Significant contrasts were found between time-windows for both VIB and post-VIB periods. COP variables were generally higher during the early 2 s phase compared to the later 8 s phase for both TIB [mean difference between 8 s- 2 s phases: Amplitude AP = -1.11 ± 1.14 cm during VIB and -2.99 ± 1.31 during post-VIB; Velocity AP = -1.17 ± 0.86 cm/s during VIB and -3.13 ± 1.31 cm/s during post-VIB] and ACH tendons [Amplitude AP = -0.37 ± 0.98 cm during VIB and -3.41 ± 1.20 during post-VIB; Velocity AP = -0.31 ± 0.59 cm/s during VIB and -3.89 ± 1.52 cm/s during post-VIB]. Most within- and between-subject variability scores were below 30% and using three instead of five trials had no impact on variability. VIB-PR patterns were quite similar within a same person, but variable behaviors were observed between individuals during the later phase. CONCLUSION: Our study highlights the relevance of identifying and separately analyzing distinct phases within VIB-PR patterns, as well as characterizing how these patterns vary at the individual level.


Assuntos
Tendão do Calcâneo , Equilíbrio Postural , Humanos , Propriocepção , Vibração , Músculo Esquelético
4.
Front Hum Neurosci ; 15: 719502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34566603

RESUMO

Background: Standing on a foam surface is used to investigate how aging affect the ability to keep balance when somatosensory inputs from feet soles become unreliable. However, since standing on foam also affects the efficacy of postural adjustments, the respective contributions of sensory and motor components are impossible to separate. This study tested the hypothesis that these components can be untangled by comparing changes of center of pressure (CoP) parameters induced by standing on a foam pad vs. a novel vibration (VIB) platform developed by our team and targeting feet soles' mechanoreceptors. Methods: Bipedal postural control of young (n = 20) and healthy elders (n = 20) was assessed while standing barefoot on a force platform through 3 randomized conditions: (1) Baseline (BL); (2) VIB; and (3) Foam. CoP Amplitude and Velocity in the antero-posterior/medio-lateral (AP/ML) directions and COP Surface were compared between conditions and groups. Findings: Both VIB and Foam increased CoP parameters compared to BL, but Foam had a significantly greater impact than VIB for both groups. Young and Old participants significantly differed for all three Conditions. However, when correcting for BL levels of postural performance, VIB-related increase of COP parameters was no longer different between groups, conversely to Foam. Interpretation: Although both VIB and Foam highlighted age-related differences of postural control, their combined use revealed that "motor" and "sensory" components are differently affected by aging, the latter being relatively unaltered, at least in healthy/active elders. The combined used of these methods could provide relevant knowledge to better understand and manage postural impairments in the aging population.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA