Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Technol Cancer Res Treat ; 17: 1533033818809051, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30380998

RESUMO

PURPOSE: To evaluate the feasibility of a workflow free of a simulation appointment using three-dimensional-printed heads and custom immobilization devices. MATERIALS AND METHODS: Simulation computed tomography scans of 11 patients who received radiotherapy for brain tumors were used to create three-dimensional printable models of the patients' heads and neck rests. The models were three-dimensional-printed using fused deposition modeling and reassembled. Then, thermoplastic immobilization masks were molded onto them. These setups were then computed tomography-scanned and compared against the volumes from the original patient computed tomography-scans. Following translational +/- rotational coregistrations of the volumes from three-dimensional-printed models and the patients, the similarities and accuracies of the setups were evaluated using Dice similarity coefficients, Hausdorff distances, differences in centroid positions, and angular deviations. Potential dosimetric differences secondary to inaccuracies in the rotational positioning of patients were calculated. RESULTS: Mean angular deviation of the 3D-printout from the original volume for the Pitch, Yaw, and Roll were 1.1° (standard deviation = 0.77°), 0.59° (standard deviation = 0.41°), and 0.79° (standard deviation = 0.86°), respectively. Following translational + rotational shifts, the mean Dice similarity coefficients of the three-dimensional-printed and original volumes was 0.985 (standard deviation = 0.002) while the mean Hausdorff distance was 0.9 mm (standard error of the mean: 0.1 mm). The mean centroid vector displacement was 0.5 mm (standard deviation: 0.3 mm). Compared to plans that were coregistered using translational + rotational shifts, the D95 of the brain from three-dimensional-printed heads adjusted for TR shifts only differed by -0.1% (standard deviation = 0.2%). CONCLUSIONS: Patient head volumes and positions at simulation computed tomography scans can be accurately reproduced using three-dimensional-printed models, which can be used to mold radiotherapy immobilization masks onto. This strategy, if applied on diagnostic computed tomography scans, may allow symptomatic and frail patients to avoid a computed tomography-simulation and mask molding session in preparation for palliative whole brain radiotherapy.


Assuntos
Neoplasias Encefálicas/radioterapia , Cabeça/efeitos da radiação , Pescoço/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Imageamento Tridimensional/métodos , Imobilização/métodos , Masculino , Pessoa de Meia-Idade , Posicionamento do Paciente/métodos , Impressão Tridimensional , Tomografia Computadorizada por Raios X/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA