Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Macromol Biosci ; 22(11): e2200225, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36200655

RESUMO

Polyzwitterions are generally known for their anti-adhesive properties, including resistance to protein and cell adhesion, and overall high bio-inertness. Yet there are a few polyzwitterions to which mammalian cells do adhere. To understand the structural features of this behavior, a panel of polyzwitterions with different functional groups and overall degrees of hydrophobicity is analyzed here, and their physical and biological properties are correlated to these structural differences. Cell adhesion is focused on, which is the basic requirement for cell viability, proliferation, and growth. With the here presented polyzwitterion panel, three different types of cell-surface interactions are observed: adhesion, slight attachment, and cell repellency. Using immunofluorescence methods, it is found that human keratinocytes (HaCaT) form focal adhesions on the cell-adhesive polyzwitterions, but not on the sample that has only slight cell attachment. Gene expression analysis indicates that HaCaT cells cultivated in the presence of a non-adhesive polyzwitterion have up-regulated inflammatory and apoptosis-related cell signaling pathways, while the gene expression of HaCaT cells grown on a cell-adhesive polyzwitterion does not differ from the gene expression of the growth control, and thus can be defined as fully cell-compatible.


Assuntos
Queratinócitos , Metacrilatos , Animais , Humanos , Adesão Celular , Metacrilatos/química , Queratinócitos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Expressão Gênica , Mamíferos
2.
Macromol Rapid Commun ; 42(18): e2100051, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34028928

RESUMO

Surfaces coated with polyzwitterions are most well-known for their ability to resist protein adsorption. In this article, a surface-attached hydrophobically modified poly(carboxybetaine) is presented. When protonated by changes of the pH of the surrounding medium, this protein-repellent polyzwitterion switches to a polycationic state in which it is antimicrobially active and protein-adhesive. The pH range in which these two states exist are recorded by zeta potential measurements. Adsorption studies at different pH values (monitored by surface plasmon resonance spectroscopy) confirm that the adhesion of protein is pH dependent and reversible, that is, protein can be released upon a pH change from pH 3 to pH 7.4. At physiological pH, the poly(carboxyzwitterion) is antimicrobially active, presumably because it becomes protonated by bacterial metabolites during the antimicrobial activity assay. Stability studies confirm that the here presented material is storage-stable, yet hydrolyses after longer incubation in aqueous media.


Assuntos
Anti-Infecciosos , Polímeros , Adsorção , Antibacterianos , Anti-Infecciosos/farmacologia , Polieletrólitos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA