Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
IUCrJ ; 11(Pt 5): 649-663, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39190507

RESUMO

Ultrahigh-resolution structures provide unprecedented details about protein dynamics, hydrogen bonding and solvent networks. The reported 0.70 Å, room-temperature crystal structure of crambin is the highest-resolution ambient-temperature structure of a protein achieved to date. Sufficient data were collected to enable unrestrained refinement of the protein and associated solvent networks using SHELXL. Dynamic solvent networks resulting from alternative side-chain conformations and shifts in water positions are revealed, demonstrating that polypeptide flexibility and formation of clathrate-type structures at hydrophobic surfaces are the key features endowing crambin crystals with extraordinary diffraction power.

2.
Patterns (N Y) ; 3(10): 100606, 2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36277824

RESUMO

Powerful detectors at modern experimental facilities routinely collect data at multiple GB/s. Online analysis methods are needed to enable the collection of only interesting subsets of such massive data streams, such as by explicitly discarding some data elements or by directing instruments to relevant areas of experimental space. Thus, methods are required for configuring and running distributed computing pipelines-what we call flows-that link instruments, computers (e.g., for analysis, simulation, artificial intelligence [AI] model training), edge computing (e.g., for analysis), data stores, metadata catalogs, and high-speed networks. We review common patterns associated with such flows and describe methods for instantiating these patterns. We present experiences with the application of these methods to the processing of data from five different scientific instruments, each of which engages powerful computers for data inversion,model training, or other purposes. We also discuss implications of such methods for operators and users of scientific facilities.

3.
J Synchrotron Radiat ; 29(Pt 5): 1141-1151, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36073872

RESUMO

Serial synchrotron crystallography enables the study of protein structures under physiological temperature and reduced radiation damage by collection of data from thousands of crystals. The Structural Biology Center at Sector 19 of the Advanced Photon Source has implemented a fixed-target approach with a new 3D-printed mesh-holder optimized for sample handling. The holder immobilizes a crystal suspension or droplet emulsion on a nylon mesh, trapping and sealing a near-monolayer of crystals in its mother liquor between two thin Mylar films. Data can be rapidly collected in scan mode and analyzed in near real-time using piezoelectric linear stages assembled in an XYZ arrangement, controlled with a graphical user interface and analyzed using a high-performance computing pipeline. Here, the system was applied to two ß-lactamases: a class D serine ß-lactamase from Chitinophaga pinensis DSM 2588 and L1 metallo-ß-lactamase from Stenotrophomonas maltophilia K279a.


Assuntos
Stenotrophomonas maltophilia , Biologia , Cristalografia , Proteínas
4.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33972410

RESUMO

The genome of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus has a capping modification at the 5'-untranslated region (UTR) to prevent its degradation by host nucleases. These modifications are performed by the Nsp10/14 and Nsp10/16 heterodimers using S-adenosylmethionine as the methyl donor. Nsp10/16 heterodimer is responsible for the methylation at the ribose 2'-O position of the first nucleotide. To investigate the conformational changes of the complex during 2'-O methyltransferase activity, we used a fixed-target serial synchrotron crystallography method at room temperature. We determined crystal structures of Nsp10/16 with substrates and products that revealed the states before and after methylation, occurring within the crystals during the experiments. Here we report the crystal structure of Nsp10/16 in complex with Cap-1 analog (m7GpppAm2'-O). Inhibition of Nsp16 activity may reduce viral proliferation, making this protein an attractive drug target.


Assuntos
Capuzes de RNA/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , SARS-CoV-2/química , Cristalografia , Metilação , Metiltransferases/química , Metiltransferases/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Análogos de Capuz de RNA/química , Análogos de Capuz de RNA/metabolismo , Capuzes de RNA/química , RNA Mensageiro/química , RNA Viral/química , S-Adenosil-Homocisteína/química , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Síncrotrons , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA