Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Cell Death Dis ; 13(1): 8, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34923573

RESUMO

While apoptosis plays a significant role in intestinal homeostasis, it can also be pathogenic if overactive during recovery from inflammation. We recently reported that microRNA-24-3p (miR-24-3p) is elevated in the colonic epithelium of ulcerative colitis patients during active inflammation, and that it reduced apoptosis in vitro. However, its function during intestinal restitution following inflammation had not been examined. In this study, we tested the influence of miR-24-3p on mucosal repair by studying recovery from colitis in both novel miR-24-3p knockout and miR-24-3p-inhibited mice. We observed that knockout mice and mice treated with a miR-24-3p inhibitor had significantly worsened recovery based on weight loss, colon length, and double-blinded histological scoring. In vivo and in vitro analysis of miR-24-3p inhibition in colonic epithelial cells revealed that inhibition promotes apoptosis and increases levels of the pro-apoptotic protein BIM. Further experiments determined that silencing of BIM reversed the pro-apoptotic effects of miR-24-3p inhibition. Taken together, these data suggest that miR-24-3p restrains intestinal epithelial cell apoptosis by targeting BIM, and its loss of function is detrimental to epithelial restitution following intestinal inflammation.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Células Epiteliais/metabolismo , Inflamação/genética , Intestinos/patologia , MicroRNAs/metabolismo , Animais , Apoptose , Humanos , Inflamação/patologia , Masculino , Camundongos , Camundongos Knockout , Transfecção
3.
Am J Physiol Gastrointest Liver Physiol ; 319(6): G646-G654, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33026230

RESUMO

Exosomes represent secretory membranous vesicles used for the information exchange between cells and organ-to-organ communication. Exosome crosstalk mechanisms are involved in the regulation of several inflammatory bowel disease (IBD)-associated pathophysiological intestinal processes such as barrier function, immune responses, and intestinal flora. Functional biomolecules, mainly noncoding RNAs (ncRNAs), are believed to be transmitted between the mammalian cells via exosomes that likely play important roles in cell-to-cell communication, both locally and systemically. MicroRNAs (miRNAs) encapsulated in exosomes have generated substantial interest because of their critical roles in multiple pathophysiological processes. In addition, exosomal miRNAs are implicated in the gut health. MiRNAs are selectively and actively loaded into the exosomes and then transferred to the target recipient cell where they manipulate cell function through posttranscriptional silencing of target genes. Intriguingly, miRNA profile of exosomes differs from their cellular counterparts suggesting an active sorting and packaging mechanism of exosomal miRNAs. Even more exciting is the involvement of posttranscriptional modifications in the specific loading of miRNAs into exosomes, but the underlying mechanisms of how these modifications direct ncRNA sorting have not been established. This review gives a brief overview of the status of exosomes and exosomal miRNAs in IBD and also discusses potential mechanisms of exosomal miRNA sorting and delivering.


Assuntos
Exossomos/genética , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/fisiopatologia , MicroRNAs/genética , Animais , Humanos
4.
Sci Rep ; 10(1): 12785, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32733043

RESUMO

Elafin is an antimicrobial and anti-inflammatory protein. We hypothesize that elafin expression correlates with diabetes. Among non-diabetic and prediabetic groups, men have significantly higher serum elafin levels than women. Men with type 2 diabetes mellitus (T2DM) have significantly lower serum elafin levels than men without T2DM. Serum elafin levels are inversely correlated with fasting blood glucose and hemoglobin A1c levels in men with T2DM, but not women with T2DM. Lentiviral elafin overexpression inhibited obesity, hyperglycemia, and liver steatosis in high-fat diet (HFD)-treated male mice. Elafin-overexpressing HFD-treated male mice had increased serum leptin levels, and serum exosomal miR181b-5p and miR219-5p expression. Transplantation of splenocytes and serum exosomes from elafin-overexpressing HFD-treated donor mice reduced food consumption and fat mass, and increased adipose tissue leptin mRNA expression in HFD-treated recipient mice. Elafin improved leptin sensitivity via reduced interferon-gamma expression and induced adipose leptin expression via increased miR181b-5p and miR219-5p expression. Subcutaneous and oral administration of modified elafin inhibited obesity, hyperglycemia, and liver steatosis in the HFD-treated mice. Circulating elafin levels are associated with hyperglycemia in men with T2DM. Elafin, via immune-derived miRNAs and cytokine, activates leptin sensitivity and expression that subsequently inhibit food consumption, obesity, hyperglycemia, and liver steatosis in HFD-treated male mice.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Elafina/uso terapêutico , Fígado Gorduroso/etiologia , Fígado Gorduroso/prevenção & controle , Hiperglicemia/etiologia , Hiperglicemia/prevenção & controle , Obesidade/etiologia , Obesidade/prevenção & controle , Tecido Adiposo/metabolismo , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Ingestão de Alimentos , Elafina/administração & dosagem , Elafina/metabolismo , Elafina/farmacologia , Feminino , Expressão Gênica , Humanos , Interferon gama/metabolismo , Leptina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Caracteres Sexuais
5.
Am J Physiol Gastrointest Liver Physiol ; 317(6): G802-G810, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31545921

RESUMO

Exosomes are cellular vesicles involved in intercellular communication via their specialized molecular cargo, such as miRNAs. Substance P (SP), a neuropeptide/hormone, and its high-affinity receptor, NK-1R, are highly expressed during colonic inflammation. Our previous studies show that SP/NK-1R signaling stimulates differential miRNA expression and promotes colonic epithelial cell proliferation. In this study, we examined whether SP/NK-1R signaling regulates exosome biogenesis and exosome-miRNA cargo sorting. Moreover, we examined the role of SP/NK-1R signaling in exosome-regulated cell proliferation and migration. Exosomes produced by human colonic NCM460 epithelial cells overexpressing NK-1R (NCM460-NK1R) were isolated from culture media. Exosome abundance and uptake were assessed by Western blot analysis (abundance) and Exo-Green fluorescence microscopy (abundance and uptake). Cargo-miRNA levels were assessed by RT-PCR. Cell proliferation and migration were assessed using xCELLigence technology. Colonic epithelial exosomes were isolated from mice pretreated with SP for 3 days. Cell proliferation in vivo was assessed by Ki-67 staining. SP/NK-1R signaling in human colonic epithelial cells (in vitro) and mouse colons (in vivo) increased 1) exosome production, 2) the level of fluorescence in NCM460s treated with Exo-Green-labeled exosomes, and 3) the level of miR-21 in exosome cargo. Moreover, our results showed that SP/NK-1R-induced cell proliferation and migration are at least in part dependent on intercellular communication via exosomal miR-21 in vitro and in vivo. Our results demonstrate that SP/NK-1R signaling regulates exosome biogenesis and induces its miR-21 cargo sorting. Moreover, exosomal miR-21 promotes proliferation and migration of target cells.NEW & NOTEWORTHY Substance P signaling regulates exosome production in human colonic epithelial cells and colonic crypts in wild-type mice. MiR-21 is selectively sorted into exosomes induced by Substance P stimulation and promotes cell proliferation and migration in human colonocytes and mouse colonic crypts.


Assuntos
Inflamação/metabolismo , Mucosa Intestinal/metabolismo , MicroRNAs/metabolismo , Receptores da Neurocinina-1/metabolismo , Substância P/metabolismo , Animais , Movimento Celular/imunologia , Proliferação de Células/fisiologia , Células Cultivadas , Colite/metabolismo , Colo/metabolismo , Colo/patologia , Exossomos/metabolismo , Citometria de Fluxo , Humanos , Camundongos , Transdução de Sinais
6.
Mol Ther Oncolytics ; 12: 195-203, 2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30847383

RESUMO

The antimicrobial peptide cathelicidin inhibits development of colitis-associated colon cancer. However, the role of cathelicidin in colon cancer metastasis remains unknown. We hypothesized that cathelicidin is effective in inhibiting colon cancer metastasis. Human colon cancer HT-29 cells were injected intravenously into nude mice. Control HA-tagged adeno-associated virus (HA-AAV) or cathelicidin-overexpressing AAV (CAMP-HA-AAV) were injected intravenously into nude mice on the same day. Four weeks later, the nude mice were assessed for lung and liver metastases. Human colon cancer SW620 cells were used to study the effect of cathelicidin on cell migration and cytoskeleton. Incubation of SW620 cells with cathelicidin dose-dependently reduced cell migration, disrupted cytoskeletal structure, and reduced ßIII-tubulin (TUBB3) mRNA expression. The addition of the P2RX7 antagonist KN62, but not the FPRL1 antagonist WRW4, prevented the LL-37-mediated inhibition of cell migration and TUBB3 mRNA expression. The CAMP-HA-AAV-overexpressing group showed significantly reduced human CK20 protein (by 60%) and TUBB3 mRNA expression (by 40%) in the lungs and liver of the HT-29-loaded nude mice, compared to the HA-AAV control group. Intraperitoneal injection of KN62 reversed the CAMP-HA-AAV-mediated inhibition of human CK20 and TUBB3 expression in the lungs and liver of HT-29-loaded nude mice. In conclusion, cathelicidin inhibits colon cancer metastasis via a P2RX7-dependent pathway.

7.
Am J Physiol Gastrointest Liver Physiol ; 315(5): G722-G733, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29953254

RESUMO

Inflammatory bowel disease (IBD) is a complex disorder that is associated with significant morbidity. While many recent advances have been made with new diagnostic and therapeutic tools, a deeper understanding of its basic pathophysiology is needed to continue this trend toward improving treatments. By utilizing an unbiased, high-throughput transcriptomic analysis of two well-established mouse models of colitis, we set out to uncover novel coding and noncoding RNAs that are differentially expressed in the setting of colonic inflammation. RNA-seq analysis was performed using colonic tissue from two mouse models of colitis, a dextran sodium sulfate-induced model and a genetic-induced model in mice lacking IL-10. We identified 81 coding RNAs that were commonly altered in both experimental models. Of these coding RNAs, 12 of the human orthologs were differentially expressed in a transcriptomic analysis of IBD patients. Interestingly, 5 of the 12 of human differentially expressed genes have not been previously identified as IBD-associated genes, including ubiquitin D. Our analysis also identified 15 noncoding RNAs that were differentially expressed in either mouse model. Surprisingly, only three noncoding RNAs were commonly dysregulated in both of these models. The discovery of these new coding and noncoding RNAs expands our transcriptional knowledge of mouse models of IBD and offers additional targets to deepen our understanding of the pathophysiology of IBD. NEW & NOTEWORTHY Much of the genome is transcribed as non-protein-coding RNAs; however, their role in inflammatory bowel disease is largely unknown. This study represents the first of its kind to analyze the expression of long noncoding RNAs in two mouse models of inflammatory bowel disease and correlate them to human clinical samples. Using high-throughput RNA-seq analysis, we identified new coding and noncoding RNAs that were differentially expressed such as ubiquitin D and 5730437C11Rik.


Assuntos
Colite/genética , Doenças Inflamatórias Intestinais/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Animais , Células CACO-2 , Células Cultivadas , Colite/metabolismo , Colo/metabolismo , Colo/patologia , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Transcriptoma
8.
Am J Pathol ; 188(3): 586-599, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29253460

RESUMO

Substance P (SP) mediates colitis. SP signaling regulates the expression of several miRNAs, including miR-31-3p, in human colonocytes. However, the role of miR-31-3p in colitis and the underlying mechanisms has not been elucidated. We performed real-time PCR analysis of miR-31-3p expression in human colonic epithelial cells overexpressing neurokinin-1 receptor (NCM460 NK-1R) in response to SP stimulation and in NCM460 cells after IL-6, IL8, tumor necrosis factor (TNF)-α, and interferon-γ exposure. Functions of miR-31-3p were tested in NCM460-NK-1R cells and the trinitrobenzene sulfonic acid (TNBS) and dextran sodium sulfate (DSS) models of colitis. Targets of miRNA-31-3p were confirmed by Western blot analysis and luciferase reporter assay. Jun N-terminal kinase inhibition decreased SP-induced miR-31-3p expression. miR-31-3p expression was increased in both TNBS- and DSS-induced colitis and human colonic biopsies from ulcerative colitis, compared with controls. Intracolonic administration of a miR-31-3p chemical inhibitor exacerbated TNBS- and DSS-induced colitis and increased colonic TNF-α, CXCL10, and chemokine (C-C motif) ligand 2 (CCL2) mRNA expression. Conversely, overexpression of miR-31-3p ameliorated the severity of DSS-induced colitis. Bioinformatic, luciferase reporter assay, and Western blot analyses identified RhoA as a target of miR-31-3p in NCM460 cells. Constitutive activation of RhoA led to increased expression of CCL2, IL6, TNF-α, and CXCL10 in NCM460-NK-1R cells on SP stimulation. Our results reveal a novel SP-miR-31-3p-RhoA pathway that protects from colitis. The use of miR-31-3p mimics may be a promising approach for colitis treatment.


Assuntos
Colite/metabolismo , Colo/metabolismo , Células Epiteliais/metabolismo , Inflamação/metabolismo , MicroRNAs/metabolismo , Substância P/farmacologia , Animais , Linhagem Celular , Colite/induzido quimicamente , Colite/patologia , Colo/efeitos dos fármacos , Colo/patologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Sulfato de Dextrana , Modelos Animais de Doenças , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos
9.
Am J Physiol Gastrointest Liver Physiol ; 313(5): G361-G372, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28774868

RESUMO

G protein-coupled receptors (GPCRs) make up the largest transmembrane receptor superfamily in the human genome and are expressed in nearly all gastrointestinal cell types. Coupling of GPCRs and their respective ligands activates various phosphotransferases in the cytoplasm, and, thus, activation of GPCR signaling in intestine regulates many cellular and physiological processes. Studies in microRNAs (miRNAs) demonstrate that they represent critical epigenetic regulators of different pathophysiological responses in different organs and cell types in humans and animals. Here, we reviewed recent research on GPCR-miRNA interactions related to gastrointestinal pathophysiology, such as inflammatory bowel diseases, irritable bowel syndrome, and gastrointestinal cancers. Given that the presence of different types of cells in the gastrointestinal tract suggests the importance of cell-cell interactions in maintaining gastrointestinal homeostasis, we also discuss how GPCR-miRNA interactions regulate gene expression at the cellular level and subsequently modulate gastrointestinal pathophysiology through molecular regulatory circuits and cell-cell interactions. These studies helped identify novel molecular pathways leading to the discovery of potential biomarkers for gastrointestinal diseases.


Assuntos
Gastroenteropatias , MicroRNAs/genética , Receptores Acoplados a Proteínas G/fisiologia , Comunicação Celular/fisiologia , Epigênese Genética/fisiologia , Gastroenteropatias/genética , Gastroenteropatias/fisiopatologia , Trato Gastrointestinal/fisiologia , Trato Gastrointestinal/fisiopatologia , Expressão Gênica , Humanos , Receptores de Interleucina-6/genética , Receptores da Neurocinina-3/genética , Transdução de Sinais/fisiologia
10.
Am J Physiol Gastrointest Liver Physiol ; 311(3): G446-57, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27492330

RESUMO

High-throughput technologies revealed new categories of genes, including the long noncoding RNAs (lncRNAs), involved in the pathogenesis of human disease; however, the role of lncRNAs in the ulcerative colitis (UC) has not been evaluated. Gene expression profiling was used to develop lncRNA signatures in UC samples. Jurkat T cells were activated by PMA/ionomycin subsequently interferon-γ (IFNG) and tumor necrosis factor (TNF)-α protein levels were assessed by ELISA. Anti-sense molecules were designed to block IFNG-AS1 expression. A unique set of lncRNAs was differentially expressed between UC and control samples. Of these, IFNG-AS1 was among the highest statistically significant lncRNAs (fold change: 5.27, P value: 7.07E-06). Bioinformatic analysis showed that IFNG-AS1 was associated with the IBD susceptibility loci SNP rs7134599 and its genomic location is adjacent to the inflammatory cytokine IFNG. In mouse models of colitis, active colitis samples had increased colonic expression of this lncRNA. Utilizing the Jurkat T cell model, we found IFNG-AS1 to positively regulate IFNG expression. Novel lncRNA signatures differentiate UC patients with active disease, patients in remission, and control subjects. A subset of these lncRNAs was found to be associated with the clinically validated IBD susceptibility loci. IFNG-AS1 was one of these differentially expressed lncRNAs in UC patients and found to regulate the key inflammatory cytokine, IFNG, in CD4 T cells. Taking these findings together, our study revealed novel lncRNA signatures deregulated in UC and identified IFNG-AS1 as a novel regulator of IFNG inflammatory responses, suggesting the potential importance of noncoding RNA mechanisms on regulation of inflammatory bowel disease-related inflammatory responses.


Assuntos
Colite Ulcerativa/metabolismo , Regulação da Expressão Gênica/fisiologia , Inflamação/metabolismo , Interferon gama/metabolismo , RNA Longo não Codificante/metabolismo , RNA Mensageiro/metabolismo , Adulto , Idoso , Animais , Estudos de Casos e Controles , Feminino , Humanos , Interferon gama/genética , Interleucina-10/genética , Interleucina-10/metabolismo , Células Jurkat , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , RNA Longo não Codificante/genética , RNA Mensageiro/genética
11.
J Immunol ; 196(10): 4311-21, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27076683

RESUMO

Neurotensin (NT) via its receptor 1 (NTR1) modulates the development of colitis, decreases HIF-1α/PHD2 interaction, stabilizes and increases HIF-1α transcriptional activity, and promotes intestinal angiogenesis. HIF-1α induces miR-210 expression, whereas miR-210 is strongly upregulated in response to NT in NCM460 human colonic epithelial cells overexpressing NTR1 (NCM460-NTR1). In this study, we examined whether NT activates a NTR1-HIF-1α-miR-210 cascade using in vitro (NCM460-NTR1 cells) and in vivo (transgenic mice overexpressing [HIF-1α-OE] or lacking HIF-1α [HIF-1α-knockout (KO)] in intestinal epithelial cells and mice lacking NTR1 [NTR1-KO]) models. Pretreatment of NCM460-NTR1 cells with the HIF-1α inhibitor PX-478 or silencing of HIF-1α (small interfering HIF-1α) attenuated miR-210 expression in response to NT. Intracolonic 2,4,6-trinitrobenzenesulfonic acid (TNBS) administration (2-d model) increased colonic miR-210 expression that was significantly reduced in NTR1-KO, HIF-1α-KO mice, and wild-type mice pretreated intracolonically with locked nucleic acid anti-miR-210. In contrast, HIF-1α-OE mice showed increased miR-210 expression at baseline that was further increased following TNBS administration. HIF-1α-OE mice had also exacerbated TNBS-induced neovascularization compared with TNBS-exposed wild-type mice. TNBS-induced neovascularization was attenuated in HIF-1α-KO mice, or mice pretreated intracolonically with anti-miR-210. Intracolonic anti-miR-210 also reduced colitis in response to TNBS (2 d). Importantly, miR-210 expression was increased in tissue samples from ulcerative colitis patients. We conclude that NT exerts its proinflammatory and proangiogenic effects during acute colitis via a NTR1-prolyl hydroxylase 2/HIF-1α-miR-210 signaling pathway. Our results also demonstrate that miR-210 plays a proinflammatory role in the development of colitis.


Assuntos
Colite Ulcerativa/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , MicroRNAs/metabolismo , Neovascularização Patológica/metabolismo , Neurotensina/metabolismo , Animais , Linhagem Celular Tumoral , Colo/irrigação sanguínea , Colo/patologia , Células Epiteliais/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Compostos de Mostarda/administração & dosagem , NF-kappa B/metabolismo , Fenilpropionatos/administração & dosagem , Receptores de Neurotensina/genética , Receptores de Neurotensina/metabolismo , Transdução de Sinais , Ácido Trinitrobenzenossulfônico , Regulação para Cima/efeitos dos fármacos
12.
Sci Rep ; 6: 22195, 2016 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-26902265

RESUMO

Neurotensin (NT) triggers signaling in human colonic epithelial cells by activating the G protein-coupled receptor, the neurotensin receptor 1 (NTR1). Activated NTR1 traffics from the plasma membrane to early endosomes, and then recycles. Although sustained NT/NTR1 signaling requires efficient NTR1 recycling, little is known about the regulation of NTR1 recycling. We recently showed that NT/NTR1 signaling increases expression of miR-133α. Herein, we studied the mechanism of NT-regulated miR-133α expression and examined the role of miR-133α in intracellular NTR1 trafficking in human NCM460 colonocytes. We found that NT-induced miR-133α upregulation involves the negative transcription regulator, zinc finger E-box binding homeobox 1. Silencing of miR-133α or overexpression of aftiphilin (AFTPH), a binding target of miR-133α, attenuated NTR1 trafficking to plasma membrane in human colonocytes, without affecting NTR1 internalization. We localized AFTPH to early endosomes and the trans-Golgi network (TGN) in unstimulated human colonic epithelial cells. AFTPH overexpression reduced NTR1 localization in early endosomes and increased expression of proteins related to endosomes and the TGN trafficking pathway. AFTPH overexpression and de-acidification of intracellular vesicles increased NTR1 expression. Our results suggest a novel mechanism of GPCR trafficking in human colonic epithelial cells by which a microRNA, miR-133α regulates NTR1 trafficking through its downstream target AFTPH.


Assuntos
Proteínas de Transporte/metabolismo , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Neurotensina/metabolismo , Receptores de Neurotensina/metabolismo , Proteínas de Transporte/genética , Linhagem Celular , Endossomos/metabolismo , Células Epiteliais/metabolismo , Humanos , MicroRNAs/metabolismo , Proteínas do Tecido Nervoso/genética , Transporte Proteico , Receptores de Neurotensina/genética , Rede trans-Golgi/metabolismo
13.
Cell Mol Gastroenterol Hepatol ; 1(5): 503-515, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26645045

RESUMO

BACKGROUND & AIMS: Substance P (SP), a neuropeptide member of the tachykinin family, plays a critical role in colitis. MicroRNAs (miRNAs) are small non-coding RNAs that negatively regulate gene expression. However, whether SP modulates expression of microRNAs in human colonic epithelial cells remains unknown. METHODS: We performed microRNA profiling analysis of SP-stimulated human colonic epithelial NCM460 cells overexpressing neurokinin-1 receptor (NCM460-NK-1R). Targets of SP-regulated microRNAs were validated by real time polymerase chain reaction (RT-PCR). Functions of miRNAs were tested in NCM460-NK-1R cells and the TNBS and DSS models of colitis. RESULTS: SP stimulated differential expression of 29 microRNAs, including miR-221-5p, the highest up regulated miR (by 12.6-fold) upon SP stimulation. Bioinformatic and luciferase reporter analyses identified interleukin 6 receptor (IL-6R) mRNA as a direct target of miR-221-5p in NCM460 cells. Accordingly, SP exposure of NCM460-NK-1R cells increased IL-6R mRNA expression, while overexpression of miR-221-5p reduced IL-6R expression. NF-κB and JNK inhibition decreased SP-induced miR-221-5p expression. MiR-221-5p expression was increased in both TNBS- and DSS-induced colitis and colonic biopsies from Ulcerative Colitis, but not Crohn's Disease subjects, compared to controls. In mice, intracolonic administration of a miR-221-5p chemical inhibitor, exacerbated TNBS-and DSS-induced colitis, and increased colonic TNF-α, Cxcl10, and Col2 α 1 mRNA expression. In situ hybridization in TNBS-and DSS-exposed colons revealed increased miR-221-5p expression primarily in colonocytes. CONCLUSIONS: Our results reveal a novel NK-1R-miR-221-5p-IL-6R network that protects from colitis. The use of miR-221-5p mimics may be a promising approach for colitis treatment.

14.
Cell Mol Gastroenterol Hepatol ; 1(6): 610-630, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26495412

RESUMO

BACKGROUND & AIMS: Chronic inflammation promotes development and progression of colorectal cancer (CRC). We explored the distribution of Corticotropin-Releasing-Hormone (CRH)-family of receptors and ligands in CRC and their contribution in tumor growth and oncogenic EMT. METHODS: mRNA expression of CRH-family members was analyzed in CRC (N=56) and control (N=46) samples, 7 CRC cell lines and normal NCM460 cells. Immunohistochemical detection of CRHR2 was performed in 20 CRC and 5 normal tissues. Cell proliferation, migration and invasion were compared between Urocortin-2 (Ucn2)-stimulated parental and CRHR2-overexpressing (CRHR2+) cells in absence or presence of IL-6. CRHR2/Ucn2-targeted effects on tumor growth and EMT were validated in SW620-xenograft mouse models. RESULTS: CRC tissues and cell lines showed decreased mRNA and protein CRHR2 expression compared to controls and NCM460, respectively. The opposite trend was shown for Ucn2. CRHR2/Ucn2 signaling inhibited cell proliferation, migration, invasion and colony formation in CRC-CRHR2+ cells. In vivo, SW620-CRHR2+ xenografts showed decreased growth, reduced expression of EMT-inducers and elevated levels of EMT-suppressors. IL-1b, IL-6 and IL-6R mRNAs where diminished in CRC-CRHR2+ cells, while CRHR2/Ucn2 signaling inhibited IL-6-mediated Stat3 activation, invasion, migration and expression of downstream targets acting as cell cycle- and EMT-inducers. Expression of cell cycle- and EMT-suppressors was augmented in IL-6/Ucn2-stimulated CRHR2+ cells. In patients, CRHR2 mRNA expression was inversely correlated with IL-6R and vimentin levels and metastasis occurrence, while positively associated with E-cadherin expression and overall survival. CONCLUSIONS: CRHR2 downregulation in CRC supports tumor expansion and spread through maintaining persistent inflammation and constitutive Stat3 activation. CRHR2low CRC phenotypes are associated with higher risk for distant metastases and poor clinical outcomes.

15.
RNA Dis ; 2(1)2015.
Artigo em Inglês | MEDLINE | ID: mdl-26005712

RESUMO

Ulcerative colitis (UC) and Crohn's Disease (CD) are the two most common forms of Inflammatory Bowel Diseases (IBD) marked by chronic and persistent inflammation. Neurotensin (NT), together with its receptor, NT receptor 1 (NTR1), are important mediators in intestinal inflammation and their expression is upregulated in the intestine of experimental colitis models and UC colonic biopsies. MicroRNAs (miRNAs) are short, non-coding RNA molecules which act as transcription repressors. We have previously shown that NT exposure upregulates miR-133α expression in human colonocytes NCM460 cells overexpressing NTR1 (NCM460-NTR1). Recently, miR-133α was further examined forits role in NT-associated proinflammatory signaling cascades and acute colitis in vivo. Our study shows that NT-induced miR-133α upregulation modulates NF-κB phosphorylation and promotes proinflammatory cytokine production. In addition, intracolonicinjection of antisense-miR-133α before colitis induction improves histological scores and proinflammatory cytokine transcription. More importantly, dysregulation of miR-133α levels and aftiphilin (AFTPH), a newly-identified miR-133α downstream target, is found only in UC patients, but not in patients with CD. Taken together, we identified NTR1/miR-133α/aftiphilin as a novel regulatory axis involved in NT-associated colonic inflammation in human colonocytes, acute colitis mouse model and in colonic biopsies from UC patients. Our results also provide evidence that colonic levels of NTR1, miR-133α and aftiphilin may also serve as potential biomarkers in UC.

16.
Gut ; 64(7): 1095-104, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25112884

RESUMO

OBJECTIVE: Neurotensin (NT) mediates colonic inflammation through its receptor neurotensin receptor 1 (NTR1). NT stimulates miR-133α expression in colonic epithelial cells. We investigated the role of miR-133α in NT-associated colonic inflammation in vitro and in vivo. DESIGN: miR-133α and aftiphilin (AFTPH) levels were measured by quantitative PCR. Antisense (as)-miR-133α was administrated intracolonicaly prior to induction of 2, 4, 6-trinitrobenzene sulfonic acid (TNBS)-induced colitis and dextran sodium sulfate (DSS)-induced colitis. The effect of AFTPH was examined by gene silencing in vitro. RESULTS: NT increased miR-133α levels in NCM-460 overexpressing NTR1 (NCM460-NTR1) and HCT-116 cells. NT-induced p38, ERK1/2, c-Jun, and NF-κB activation, as well as IL-6, IL-8 and IL-1ß messenger RNA (mRNA) expression in NCM-460-NTR1 cells were reduced in miR-133α-silenced cells, while overexpression of miR-133α reversed these effects. MiR-133α levels were increased in TNBS (2 day) and DSS (5 day) colitis, while NTR1 deficient DSS-exposed mice had reduced miR-133α levels, compared to wild-type colitic mice. Intracolonic as-miR-133α attenuated several parameters of colitis as well expression of proinflammatory mediators in the colonic mucosa. In silico search coupled with qPCR identified AFTPH as a downstream target of miR-133α, while NT decreased AFTPH expression in NCM-460-NTR1 colonocytes. Gene silencing of AFTPH enhanced NT-induced proinflammatory responses and AFTPH levels were downregulated in experimental colitis. Levels of miR-133α were significantly upregulated, while AFTPH levels were downregulated in colonic biopsies of patients with ulcerative colitis compared to controls. CONCLUSIONS: NT-associated colitis and inflammatory signalling are regulated by miR-133α-AFTPH interactions. Targeting of miR-133α or AFTPH may represent a novel therapeutic approach in inflammatory bowel disease.


Assuntos
Colite/fisiopatologia , Colo/fisiologia , Células Epiteliais/fisiologia , Animais , Colo/citologia , Células HCT116 , Humanos , Camundongos , Camundongos Knockout , MicroRNAs , NF-kappa B/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Receptores de Neurotensina/genética , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
17.
Am J Pathol ; 184(12): 3405-14, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25307345

RESUMO

The expression of neurotensin (NT) and its receptor (NTR1) is up-regulated in experimental colitis and inflammatory bowel disease; NT/NTR1 interactions regulate gut inflammation. During active inflammation, metabolic shifts toward hypoxia lead to the activation of hypoxia-inducible factor (HIF)-1, which enhances vascular endothelial growth factor (VEGF) expression, promoting angiogenesis. We hypothesized that NT/NTR1 signaling regulates intestinal manifestations of hypoxia and angiogenesis by promoting HIF-1 transcriptional activity and VEGFα expression in experimental colitis. We studied NTR1 signaling in colitis-associated angiogenesis using 2,4,6-trinitrobenzenesulfonic acid-treated wild-type and NTR1-knockout mice. The effects of NT on HIF-1α and VEGFα were assessed on human colonic epithelial cells overexpressing NTR1 (NCM460-NTR1) and human intestinal microvascular-endothelial cells. NTR1-knockout mice had reduced microvascular density and mucosal integrity score compared with wild-type mice after 2,4,6-trinitrobenzenesulfonic acid treatment. VEGFα mRNA levels were increased in NCM460-NTR1 cells treated with 10(-7) mol/L NT, at 1 and 6 hours post-treatment. NT exposure in NCM460-NTR1 cells caused stabilization, nuclear translocation, and transcriptional activity of HIF-1α in a diacylglycerol kinase-dependent manner. NT did not stimulate tube formation in isolated human intestinal macrovascular endothelial cells but did so in human intestinal macrovascular endothelial cells cocultured with NCM460-NTR1 cells. Our results demonstrate the importance of an NTR1-HIF-1α-VEGFα axis in intestinal angiogenic responses and in the pathophysiology of colitis and inflammatory bowel disease.


Assuntos
Colo/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Receptores de Neurotensina/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Colite/patologia , Colo/citologia , Modelos Animais de Doenças , Células Endoteliais/citologia , Humanos , Imuno-Histoquímica , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/metabolismo , Intestinos/irrigação sanguínea , Masculino , Camundongos , Microcirculação , Neovascularização Patológica , Ácido Trinitrobenzenossulfônico/química , Regulação para Cima
18.
Am J Transl Res ; 5(4): 412-26, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23724165

RESUMO

SIRT1, a longevity regulator and NAD(+)-dependent deacetylase, plays a critical role in promoting metabolic fitness associated with calorie restriction and healthy ageing. Using a tissue-specific transgenic approach, the present study demonstrates that over-expression of human SIRT1 selectively in adipose tissue of mice prevents ageing-induced deterioration of insulin sensitivity and ectopic lipid distribution, reduces whole body fat mass and enhances locomotor activity. During ageing, the water-soluble vitamin biotin is progressively accumulated in adipose tissue. Over-expression of SIRT1 alleviates ageing-associated biotin accumulation and reduces the amount of biotinylated proteins, including acetyl CoA carboxylase, a major reservoir of biotin in adipose tissues. Chronic biotin supplementation increases adipose biotin contents and abolishes adipose SIRT1-mediated beneficial effects on insulin sensitivity, lipid metabolism and locomotor activity. Biochemical, spectrometric and chromatographic analysis revealed that biotin and its metabolites act as competitive inhibitors of SIRT1-mediated deacetylation. In summary, these results demonstrate that adipose SIRT1 is a key player in maintaining systemic energy homeostasis and insulin sensitivity; enhancing its activity solely in adipose tissue can prevent ageing-associated metabolic disorders.

19.
Gut ; 62(9): 1295-305, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22760006

RESUMO

BACKGROUND: Clostridium difficile mediates intestinal inflammation by releasing toxin A (TxA), a potent enterotoxin. Cathelicidins (Camp as gene name, LL-37 peptide in humans and mCRAMP peptide in mice) are antibacterial peptides that also posses anti-inflammatory properties. OBJECTIVES: To determine the role of cathelicidins in models of Clostridium difficile infection and TxA-mediated ileal inflammation and cultured human primary monocytes. DESIGN: Wild-type (WT) and mCRAMP-deficient (Camp(-/-)) mice were treated with an antibiotic mixture and infected orally with C difficile. Some mice were intracolonically given mCRAMP daily for 3 days. Ileal loops were also prepared in WT mice and treated with either saline or TxA and incubated for 4 h, while some TxA-treated loops were injected with mCRAMP. RESULTS: Intracolonic mCRAMP administration to C difficile-infected WT mice showed significantly reduced colonic histology damage, apoptosis, tissue myeloperoxidase (MPO) and tumour necrosis factor (TNF)α levels. Ileal mCRAMP treatment also significantly reduced histology damage, tissue apoptosis, MPO and TNFα levels in TxA-exposed ileal loops. WT and Camp(-/-) mice exhibited similar intestinal responses in both models, implying that C difficile/TxA-induced endogenous cathelicidin may be insufficient to modulate C difficile/TxA-mediated intestinal inflammation. Both LL-37 and mCRAMP also significantly reduced TxA-induced TNFα secretion via inhibition of NF-κB phosphorylation. Endogenous cathelicidin failed to control C difficile and/or toxin A-mediated inflammation and even intestinal cathelicidin expression was increased in humans and mice. CONCLUSION: Exogenous cathelicidin modulates C difficile colitis by inhibiting TxA-associated intestinal inflammation. Cathelicidin administration may be a new anti-inflammatory treatment for C difficile toxin-associated disease.


Assuntos
Catelicidinas , Clostridioides difficile , Enterocolite Pseudomembranosa , Íleo/efeitos dos fármacos , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Apoptose/efeitos dos fármacos , Catelicidinas/metabolismo , Catelicidinas/farmacologia , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/fisiologia , Modelos Animais de Doenças , Enterocolite Pseudomembranosa/tratamento farmacológico , Enterocolite Pseudomembranosa/microbiologia , Enterocolite Pseudomembranosa/patologia , Enterotoxinas/antagonistas & inibidores , Humanos , Íleo/metabolismo , Íleo/patologia , Mediadores da Inflamação/metabolismo , Camundongos , Resultado do Tratamento , Fator de Necrose Tumoral alfa/metabolismo
20.
J Biol Chem ; 287(18): 15066-75, 2012 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-22416137

RESUMO

The neuropeptide/hormone neurotensin (NT) mediates intestinal inflammation and cell proliferation by binding of its high affinity receptor, neurotensin receptor-1 (NTR1). NT stimulates IL-8 expression in NCM460 human colonic epithelial cells by both MAP kinase- and NF-κB-dependent pathways. Although the mechanism of NTR1 endocytosis has been studied, the relationship between NTR1 intracellular trafficking and inflammatory signaling remains to be elucidated. In the present study, we show that in NCM460 cells exposed to NT, ß-arrestin-1 (ßARR1), and ß-arrestin-2 (ßARR2) translocate to early endosomes together with NTR1. Endothelin-converting enzyme-1 (ECE-1) degrades NT in acidic conditions, and its activity is crucial for NTR1 recycling. Pretreatment of NCM460 cells with the ECE-1 inhibitor SM19712 or gene silencing of ßARR1 or ßARR2 inhibits NT-stimulated ERK1/2 and JNK phosphorylation, NF-κB p65 nuclear translocation and phosphorylation, and IL-8 secretion. Furthermore, NT-induced cell proliferation, but not IL-8 transcription, is attenuated by the JNK inhibitor, JNK(AII). Thus, NTR1 internalization and recycling in human colonic epithelial cells involves ßARRs and ECE-1, respectively. Our results also indicate that ßARRs and ECE-1-dependent recycling regulate MAP kinase and NF-κB signaling as well as cell proliferation in human colonocytes in response to NT.


Assuntos
Arrestinas/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Endocitose/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Metaloendopeptidases/metabolismo , Neurotensina/metabolismo , Proteólise , Receptores de Neurotensina/metabolismo , Arrestinas/genética , Ácido Aspártico Endopeptidases/genética , Linhagem Celular , Colo/citologia , Colo/metabolismo , Endocitose/efeitos dos fármacos , Enzimas Conversoras de Endotelina , Humanos , Inflamação/genética , Inflamação/metabolismo , Interleucina-8/genética , Interleucina-8/metabolismo , Mucosa Intestinal/citologia , Mucosa Intestinal/metabolismo , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Metaloendopeptidases/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neurotensina/genética , Receptores de Neurotensina/antagonistas & inibidores , Receptores de Neurotensina/genética , Sulfonamidas/farmacologia , Compostos de Sulfonilureia/farmacologia , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , beta-Arrestina 1 , beta-Arrestina 2 , beta-Arrestinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA