Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 30(7): 18091-18112, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36205874

RESUMO

Subsurface leaching of agricultural runoff has been identified to pose a serious hazard to the soil-water ecosystem and human health, mostly due to the associated contamination with nitrate. Our understanding of the nature of contaminant spread in the vadose and aquifer zones has been improved from recent mechanistic models on the flow and transport of contaminants through fractured porous media. The present study aims to explore the impacts of skin formation in a fracture-matrix aquifer system onto the nitrogen species transport under non-isothermal settings using numerical modeling. A finite-difference scheme was employed to capture the nitrogen concentration profile and kinetics of transformation by solving the derived partial differential equations. The results show evidence of an additional mass transfer from fracture to skin so as to reduce the migration of nitrogen species (NO3-N and N2) at the fracture-matrix interface thereby reducing the peak concentration of N2 by nearly 1.5 times in fracture after denitrification. Although the thermal conductivity of the rock matrix has a direct impact on the temperature distribution in fracture-skin-matrix profiles, the presence of skin has a cooling effect for a high-temperature influent (45 °C), which also deteriorates the propagation of organic N2 and NO3-N, within the fracture. An increase in the temperature coefficient of skin has resulted in an apparent reduction in nitrogen species migration, indicating the thermo-chemical feasibility of an intermediate skin favoring the mass transfer processes. The findings of this study can be extended toward realistic estimation of groundwater contamination risks and for the design of biological filters for in situ remediation.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Humanos , Nitratos/análise , Ecossistema , Nitrogênio/análise , Agricultura , Solo , Poluentes Químicos da Água/análise , Monitoramento Ambiental
2.
Environ Sci Pollut Res Int ; 30(10): 27650-27669, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36385338

RESUMO

Due to the rise in vehicular emissions, the rapid deterioration of the atmospheric air quality is a cause for concern in a global scale. In this context, the objective of this study is to explore the effect of post-injection parameters on a continuous active regeneration trap (CART) to mitigate harmful greenhouse gases (GHG) and particulate smoke emissions (PSE) using diesel fuel reformulated by long-chain microalgae bio-alcohol and low-density microalgae biodiesel. Furthermore, the efficiency of the CART unit is analyzed based on its ability to mitigate the harmful emissions without sacrificing the engine performance characteristics. From the study, it was observed that the maximum de-smoke efficiency of 67.85% is observed at a post-injection timing (PIT) of 20°CA aTDC at a post-injection mass (PIM) of 4 mg for low load condition while operating on microalgae biodiesel. While operating on microalgae bio-alcohol, the maximum de-smoke CART efficiency was observed as 67.25% and 55.78% for low and medium load conditions at a PIT and PIM of 20°CA aTDC and 2 mg while operating on the microalgae bio-alcohol. Likewise, the maximum de-HC CART efficiency was obtained at a PIT and PIM of 10°CA aTDC and 1 mg with a reduction of about 75% and 73.8% for medium and high load conditions. A slight reduction in oxides of nitrogen with the complete elimination of carbon monoxide emissions is observed after CART treatment for both the fuels.


Assuntos
Gases de Efeito Estufa , Microalgas , Óxidos de Nitrogênio/análise , Biocombustíveis/análise , Gasolina/análise , Etanol , Emissões de Veículos/análise , Fumaça
3.
Environ Sci Pollut Res Int ; 29(57): 85922-85944, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34363171

RESUMO

Subsurface contamination is a frequent occurrence in fractured porous systems, posing a potential threat for the groundwater contamination. Tracking the movement of these contaminants is an inherent aspect of effective remediation strategy. The non-isothermal conditions prevailing in the subsurface environment further add to the complexity of the existing scenario. The current study focuses on simulating the concentration profiles of nitrogen species in a fracture-matrix system under non-isothermal conditions. The kinetics and biochemical thermodynamics of nitrogen transformation reactions were explicitly modelled in this study by adopting a finite differential numerical scheme. The numerical results clearly depicted the spatial-temporal profiles of the concentration of all the species in response to the observed peak values. Considering the sensitivity of the model parameters, an increase in flow velocity triggered the migration of all nitrogen species in the fracture, while an increase in matrix porosity reduced the concentration by enhancing the chemical reactions. An increase in fracture aperture also could trigger the denitrification process in the fracture to reduce the nitrate-nitrogen contamination in the fracture. The temperature variation between 25 °C and 45 °C in the fracture and the matrix essentially reduced the availability of nitrate-nitrogen and nitrogen gas in the fracture under non-isothermal conditions. Hence, an increase in the temperature coefficient can reduce the spike of nitrate-nitrogen and nitrogen gas in fracture by minimizing such transformation rates.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Porosidade , Nitratos , Modelos Teóricos , Nitrogênio , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA