Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Virol ; 91(17)2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28637751

RESUMO

Understanding the interactions between rabies virus (RABV) and individual host cell proteins is critical for the development of targeted therapies. Here we report that interferon-induced protein with tetratricopeptide repeats 2 (Ifit2), an interferon-stimulated gene (ISG) with possible RNA-binding capacity, is an important restriction factor for rabies virus. When Ifit2 was depleted, RABV grew more quickly in mouse neuroblastoma cells in vitro This effect was replicated in vivo, where Ifit2 knockout mice displayed a dramatically more severe disease phenotype than wild-type mice after intranasal inoculation of RABV. This increase in pathogenicity correlated to an increase in RABV mRNA and live viral load in the brain, as well as to an accelerated spread to brain regions normally affected by this RABV model. These results suggest that Ifit2 exerts its antiviral effect mainly at the level of viral replication, as opposed to functioning as a mechanism that restricts viral entry/egress or transports RABV particles through axons.IMPORTANCE Rabies is a fatal zoonotic disease with a nearly 100% case fatality rate. Although there are effective vaccines for rabies, this disease still takes the lives of about 50,000 people each year. Victims tend to be children living in regions without comprehensive medical infrastructure who present to health care workers too late for postexposure prophylaxis. The protein discussed in our report, Ifit2, is found to be an important restriction factor for rabies virus, acting directly or indirectly against viral replication. A more nuanced understanding of this interaction may reveal a step of a pathway or site at which the system could be exploited for the development of a targeted therapy.


Assuntos
Encéfalo/virologia , Proteínas/metabolismo , Vírus da Raiva/patogenicidade , Raiva/patologia , Animais , Proteínas Reguladoras de Apoptose , Encéfalo/patologia , Linhagem Celular Tumoral , Feminino , Interferons/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuroblastoma/virologia , Proteínas/genética , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA , Raiva/virologia , Vírus da Raiva/fisiologia , Virulência , Replicação Viral
2.
PLoS One ; 11(7): e0158037, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27455208

RESUMO

OBJECTIVE: Human Immunodeficiency Virus (HIV) and Hepatitis C virus (HCV) co-infection is recognized as a major cause of morbidity and mortality among HIV-1 infected patients. Our understanding of the impact of HIV infection on HCV specific immune responses and liver disease outcome is limited by the heterogeneous study populations with genetically diverse infecting viruses, varying duration of infection and anti-viral treatment. METHODS: Viral-specific immune responses in a cohort of 151 HCV mono- and HIV co-infected former plasma donors infected with a narrow source of virus were studied. HCV and HIV specific T cell responses were correlated with clinical data. RESULTS: HIV-1 accelerated liver disease progression and decreased HCV specific T cell immunity. The magnitude of HCV specific T cell responses inversely correlated with lower HCV RNA load and reduced liver injury as assessed by non-invasive markers of liver fibrosis. HIV co-infection reduced the frequency of HCV specific CD4+ T cells with no detectable effect on CD8+ T cells or neutralizing antibody levels. CONCLUSION: Our study highlights the impact of HIV co-infection on HCV specific CD4+ T cell responses in a unique cohort of patients for both HCV and HIV and suggests a crucial role for these cells in controlling chronic HCV replication and liver disease progression.


Assuntos
Doadores de Sangue , Infecções por HIV/epidemiologia , Infecções por HIV/imunologia , HIV-1/imunologia , Hepacivirus/imunologia , Hepatite C/epidemiologia , Hepatite C/imunologia , Cirrose Hepática/epidemiologia , Adulto , Idoso , Anticorpos Neutralizantes/imunologia , Terapia Antirretroviral de Alta Atividade , Biomarcadores , China/epidemiologia , Coinfecção , Progressão da Doença , Feminino , Infecções por HIV/complicações , Infecções por HIV/virologia , HIV-1/genética , Hepacivirus/genética , Hepatite C/complicações , Hepatite C/virologia , Anticorpos Anti-Hepatite C/imunologia , Humanos , Interferon gama/biossíntese , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , Pessoa de Meia-Idade , Especificidade do Receptor de Antígeno de Linfócitos T/imunologia , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Carga Viral , Replicação Viral
3.
PLoS One ; 8(6): e67123, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840600

RESUMO

This study analyzed a heterologous prime-boost vaccine approach against HIV-1 using three different antigenically unrelated negative-stranded viruses (NSV) expressing HIV-1 Gag as vaccine vectors: rabies virus (RABV), vesicular stomatitis virus (VSV) and Newcastle disease virus (NDV). We hypothesized that this approach would result in more robust cellular immune responses than those achieved with the use of any of the vaccines alone in a homologous prime-boost regimen. To this end, we primed BALB/c mice with each of the NSV-based vectors. Primed mice were rested for thirty-five days after which we administered a second immunization with the same or heterologous NSV-Gag viruses. The magnitude and quality of the Gag-specific CD8(+) T cells in response to these vectors post boost were measured. In addition, we performed challenge experiments using vaccinia virus expressing HIV-1 Gag (VV-Gag) thirty-three days after the boost inoculation. Our results showed that the choice of the vaccine used for priming was important for the detected Gag-specific CD8(+) T cell recall responses post boost and that NDV-Gag appeared to result in a more robust recall of CD8(+) T cell responses independent of the prime vaccine used. However, the different prime-boost strategies were not distinct for the parameters studied in the challenge experiments using VV-Gag but did indicate some benefits compared to single immunizations. Taken together, our data show that NSV vectors can individually stimulate HIV-Gag specific CD8(+) T cells that are effectively recalled by other NSV vectors in a heterologous prime-boost approach. These results provide evidence that RABV, VSV and NDV can be used in combination to develop vaccines needing prime-boost regimens to stimulate effective immune responses.


Assuntos
HIV-1/imunologia , Imunização Secundária/métodos , Vírus de RNA/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/genética , Produtos do Gene gag do Vírus da Imunodeficiência Humana/imunologia , Animais , Linfócitos T CD8-Positivos/imunologia , DNA Recombinante/genética , Feminino , Vetores Genéticos/genética , Camundongos , Camundongos Endogâmicos BALB C
4.
J Virol ; 87(10): 5848-57, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23487464

RESUMO

Inflammasome activation is important for the development of an effective host defense against many pathogens, including RNA viruses. However, the mechanism by which the inflammasome recognizes RNA viruses and its role in rabies virus (RABV) pathogenicity and immunogenicity remain poorly defined. To determine the function of the inflammasome in response to RABV infection, we infected murine bone marrow-derived dendritic cells (BMDCs) with RABV. Our results indicate that the infection of BMDCs with RABV induces both the production of pro-interleukin-1ß (pro-IL-1ß) and its processing, resulting in the secretion of active IL-1ß through activation of the NLRP3-, ASC-, and caspase-1-dependent inflammasome. As previously shown for the induction of type I interferon by RABV, the induction of pro-IL-1ß also depends upon IPS-1. We demonstrate that both the production of pro-IL-1ß and activation of the inflammasome require viral replication. We also demonstrate that increased viral replication in BMDCs derived from IFNAR-deficient mice resulted in significantly more IL-1ß release. Additionally, IL-1 receptor-deficient mice show an increase in RABV pathogenicity. Taken together, these results indicate an important role of the inflammasome in innate immune recognition of RABV.


Assuntos
Proteínas de Transporte/metabolismo , Células Dendríticas/imunologia , Células Dendríticas/virologia , Inflamassomos/imunologia , Interleucina-1beta/metabolismo , Vírus da Raiva/imunologia , Animais , Células Cultivadas , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA