Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ISME Commun ; 4(1): ycae062, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38800125

RESUMO

Bacteria on and inside leaves can influence forest tree health and resilience. The distribution and limits of a tree species' range can be influenced by various factors, with biological interactions among the most significant. We investigated the processes shaping the bacterial needle community across the species distribution of limber pine, a widespread Western conifer inhabiting a range of extreme habitats. We tested four hypotheses: (i) Needle community structure varies across sites, with site-specific factors more important to microbial assembly than host species selection; (ii) dispersal limitation structures foliar communities across the range of limber pine; (iii) the relative significance of dispersal and selection differs across sites in the tree species range; and (iv) needle age structures bacterial communities. We characterized needle communities from the needle surface and tissue of limber pine and co-occurring conifers across 16 sites in the limber pine distribution. Our findings confirmed that site characteristics shape the assembly of bacterial communities across the host species range and showed that these patterns are not driven by dispersal limitation. Furthermore, the strength of selection by the host varied by site, possibly due to differences in available microbes. Our study, by focusing on trees in their natural setting, reveals real needle bacterial dynamics in forests, which is key to understanding the balance between stochastic and deterministic processes in shaping forest tree-microbe interactions. Such understanding will be necessary to predict or manipulate these interactions to support forest ecosystem productivity or assist plant migration and adaptation in the face of global change.

2.
Nat Plants ; 9(2): 238-254, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36747050

RESUMO

Peatlands are crucial sinks for atmospheric carbon but are critically threatened due to warming climates. Sphagnum (peat moss) species are keystone members of peatland communities where they actively engineer hyperacidic conditions, which improves their competitive advantage and accelerates ecosystem-level carbon sequestration. To dissect the molecular and physiological sources of this unique biology, we generated chromosome-scale genomes of two Sphagnum species: S. divinum and S. angustifolium. Sphagnum genomes show no gene colinearity with any other reference genome to date, demonstrating that Sphagnum represents an unsampled lineage of land plant evolution. The genomes also revealed an average recombination rate an order of magnitude higher than vascular land plants and short putative U/V sex chromosomes. These newly described sex chromosomes interact with autosomal loci that significantly impact growth across diverse pH conditions. This discovery demonstrates that the ability of Sphagnum to sequester carbon in acidic peat bogs is mediated by interactions between sex, autosomes and environment.


Assuntos
Ecossistema , Sphagnopsida , Sequestro de Carbono , Sphagnopsida/fisiologia , Clima , Cromossomos Sexuais
3.
Microbiol Resour Announc ; 11(10): e0040022, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36069554

RESUMO

We present 49 metagenome assemblies of the microbiome associated with Sphagnum (peat moss) collected from ambient, artificially warmed, and geothermally warmed conditions across Europe. These data will enable further research regarding the impact of climate change on plant-microbe symbiosis, ecology, and ecosystem functioning of northern peatland ecosystems.

4.
Nat Chem Biol ; 18(7): 762-773, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35668191

RESUMO

Mucins are large gel-forming polymers inside the mucus barrier that inhibit the yeast-to-hyphal transition of Candida albicans, a key virulence trait of this important human fungal pathogen. However, the molecular motifs in mucins that inhibit filamentation remain unclear despite their potential for therapeutic interventions. Here, we determined that mucins display an abundance of virulence-attenuating molecules in the form of mucin O-glycans. We isolated and cataloged >100 mucin O-glycans from three major mucosal surfaces and established that they suppress filamentation and related phenotypes relevant to infection, including surface adhesion, biofilm formation and cross-kingdom competition between C. albicans and the bacterium Pseudomonas aeruginosa. Using synthetic O-glycans, we identified three structures (core 1, core 1 + fucose and core 2 + galactose) that are sufficient to inhibit filamentation with potency comparable to the complex O-glycan pool. Overall, this work identifies mucin O-glycans as host molecules with untapped therapeutic potential to manage fungal pathogens.


Assuntos
Candida albicans , Mucinas , Fucose , Mucinas/química , Polissacarídeos/química , Virulência
5.
New Phytol ; 234(6): 2111-2125, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35266150

RESUMO

Sphagnum peatmosses are fundamental members of peatland ecosystems, where they contribute to the uptake and long-term storage of atmospheric carbon. Warming threatens Sphagnum mosses and is known to alter the composition of their associated microbiome. Here, we use a microbiome transfer approach to test if microbiome thermal origin influences host plant thermotolerance. We leveraged an experimental whole-ecosystem warming study to collect field-grown Sphagnum, mechanically separate the associated microbiome and then transfer onto germ-free laboratory Sphagnum for temperature experiments. Host and microbiome dynamics were assessed with growth analysis, Chla fluorescence imaging, metagenomics, metatranscriptomics and 16S rDNA profiling. Microbiomes originating from warming field conditions imparted enhanced thermotolerance and growth recovery at elevated temperatures. Metagenome and metatranscriptome analyses revealed that warming altered microbial community structure in a manner that induced the plant heat shock response, especially the HSP70 family and jasmonic acid production. The heat shock response was induced even without warming treatment in the laboratory, suggesting that the warm-microbiome isolated from the field provided the host plant with thermal preconditioning. Our results demonstrate that microbes, which respond rapidly to temperature alterations, can play key roles in host plant growth response to rapidly changing environments.


Assuntos
Microbiota , Sphagnopsida , Carbono , Ecossistema , Metagenoma , Sphagnopsida/fisiologia , Temperatura
6.
ISME J ; 16(4): 1074-1085, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34845335

RESUMO

Interactions between Sphagnum (peat moss) and cyanobacteria play critical roles in terrestrial carbon and nitrogen cycling processes. Knowledge of the metabolites exchanged, the physiological processes involved, and the environmental conditions allowing the formation of symbiosis is important for a better understanding of the mechanisms underlying these interactions. In this study, we used a cross-feeding approach with spatially resolved metabolite profiling and metatranscriptomics to characterize the symbiosis between Sphagnum and Nostoc cyanobacteria. A pH gradient study revealed that the Sphagnum-Nostoc symbiosis was driven by pH, with mutualism occurring only at low pH. Metabolic cross-feeding studies along with spatially resolved matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) identified trehalose as the main carbohydrate source released by Sphagnum, which were depleted by Nostoc along with sulfur-containing choline-O-sulfate, taurine and sulfoacetate. In exchange, Nostoc increased exudation of purines and amino acids. Metatranscriptome analysis indicated that Sphagnum host defense was downregulated when in direct contact with the Nostoc symbiont, but not as a result of chemical contact alone. The observations in this study elucidated environmental, metabolic, and physiological underpinnings of the widespread plant-cyanobacterial symbioses with important implications for predicting carbon and nitrogen cycling in peatland ecosystems as well as the basis of general host-microbe interactions.


Assuntos
Nostoc , Simbiose , Carbono/metabolismo , Ecossistema , Nitrogênio/metabolismo , Nostoc/fisiologia
7.
Bioinformatics ; 37(20): 3654-3656, 2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-33904572

RESUMO

MOTIVATION: Structure-conditioned information statistics have proven useful to predict and visualize tRNA Class-Informative Features (CIFs) and their evolutionary divergences. Although permutation P-values can quantify the significance of CIF divergences between two taxa, their naive Monte Carlo approximation is slow and inaccurate. The Peaks-over-Threshold approach of Knijnenburg et al. (2009) promises improvements to both speed and accuracy of permutation P-values, but has no publicly available API. RESULTS: We present tRNA Structure-Function Mapper (tSFM) v1.0, an open-source, multi-threaded application that efficiently computes, visualizes and assesses significance of single- and paired-site CIFs and their evolutionary divergences for any RNA, protein, gene or genomic element sequence family. Multiple estimators of permutation P-values for CIF evolutionary divergences are provided along with confidence intervals. tSFM is implemented in Python 3 with compiled C extensions and is freely available through GitHub (https://github.com/tlawrence3/tSFM) and PyPI. AVAILABILITY AND IMPLEMENTATION: The data underlying this article are available on GitHub at https://github.com/tlawrence3/tSFM. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

8.
Bioinformatics ; 37(14): 2058-2060, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-33135060

RESUMO

SUMMARY: Antimicrobial peptides (AMPs) are promising alternative antimicrobial agents. Currently, however, portable, user-friendly and efficient methods for predicting AMP sequences from genome-scale data are not readily available. Here we present amPEPpy, an open-source, multi-threaded command-line application for predicting AMP sequences using a random forest classifier. AVAILABILITY AND IMPLEMENTATION: amPEPpy is implemented in Python 3 and is freely available through GitHub (https://github.com/tlawrence3/amPEPpy). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genoma , Software , Proteínas Citotóxicas Formadoras de Poros
9.
Microorganisms ; 8(8)2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32731357

RESUMO

Pseudomonas syringae is a ubiquitous plant pathogen, infecting both woody and herbaceous plants and resulting in devastating agricultural crop losses. Characterized by a remarkable specificity for plant hosts, P. syringae pathovars utilize a number of virulence factors including the type III secretion system and effector proteins to elicit disease in a particular host species. Here, two Pseudomonas syringae strains were isolated from diseased Populustrichocarpa seeds. The pathovars were capable of inhibiting poplar seed germination and were selective for the Populus genus. Sequencing of the newly described organisms revealed similarity to phylogroup II pathogens and genomic regions associated with woody host-associated plant pathogens, as well as genes for specific virulence factors. The host response to infection, as revealed through metabolomics, is the induction of the stress response through the accumulation of higher-order salicylates. Combined with necrosis on leaf surfaces, the plant appears to quickly respond by isolating infected tissues and mounting an anti-inflammatory defense. This study improves our understanding of the initial host response to epiphytic pathogens in Populus and provides a new model system for studying the effects of a bacterial pathogen on a woody host plant in which both organisms are fully genetically sequenced.

10.
PeerJ ; 8: e8534, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32149021

RESUMO

BACKGROUND: Microbiomes are extremely important for their host organisms, providing many vital functions and extending their hosts' phenotypes. Natural studies of host-associated microbiomes can be difficult to interpret due to the high complexity of microbial communities, which hinders our ability to track and identify individual members along with the many factors that structure or perturb those communities. For this reason, researchers have turned to synthetic or constructed communities in which the identities of all members are known. However, due to the lack of tracking methods and the difficulty of creating a more diverse and identifiable community that can be distinguished through next-generation sequencing, most such in vivo studies have used only a few strains. RESULTS: To address this issue, we developed DISCo-microbe, a program for the design of an identifiable synthetic community of microbes for use in in vivo experimentation. The program is composed of two modules; (1) create, which allows the user to generate a highly diverse community list from an input DNA sequence alignment using a custom nucleotide distance algorithm, and (2) subsample, which subsamples the community list to either represent a number of grouping variables, including taxonomic proportions, or to reach a user-specified maximum number of community members. As an example, we demonstrate the generation of a synthetic microbial community that can be distinguished through amplicon sequencing. The synthetic microbial community in this example consisted of 2,122 members from a starting DNA sequence alignment of 10,000 16S rRNA sequences from the Ribosomal Database Project. We generated simulated Illumina sequencing data from the constructed community and demonstrate that DISCo-microbe is capable of designing diverse communities with members distinguishable by amplicon sequencing. Using the simulated data we were able to recover sequences from between 97-100% of community members using two different post-processing workflows. Furthermore, 97-99% of sequences were assigned to a community member with zero sequences being misidentified. We then subsampled the community list using taxonomic proportions to mimic a natural plant host-associated microbiome, ultimately yielding a diverse community of 784 members. CONCLUSIONS: DISCo-microbe can create a highly diverse community list of microbes that can be distinguished through 16S rRNA gene sequencing, and has the ability to subsample (i.e., design) the community for the desired number of members and taxonomic proportions. Although developed for bacteria, the program allows for any alignment input from any taxonomic group, making it broadly applicable. The software and data are freely available from GitHub (https://github.com/dlcarper/DISCo-microbe) and Python Package Index (PYPI).

11.
PLoS Negl Trop Dis ; 14(2): e0007983, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32106219

RESUMO

The development of chemotherapies against eukaryotic pathogens is especially challenging because of both the evolutionary conservation of drug targets between host and parasite, and the evolution of strain-dependent drug resistance. There is a strong need for new nontoxic drugs with broad-spectrum activity against trypanosome parasites such as Leishmania and Trypanosoma. A relatively untested approach is to target macromolecular interactions in parasites rather than small molecular interactions, under the hypothesis that the features specifying macromolecular interactions diverge more rapidly through coevolution. We computed tRNA Class-Informative Features in humans and independently in eight distinct clades of trypanosomes, identifying parasite-specific informative features, including base pairs and base mis-pairs, that are broadly conserved over approximately 250 million years of trypanosome evolution. Validating these observations, we demonstrated biochemically that tRNA:aminoacyl-tRNA synthetase (aaRS) interactions are a promising target for anti-trypanosomal drug discovery. From a marine natural products extract library, we identified several fractions with inhibitory activity toward Leishmania major alanyl-tRNA synthetase (AlaRS) but no activity against the human homolog. These marine natural products extracts showed cross-reactivity towards Trypanosoma cruzi AlaRS indicating the broad-spectrum potential of our network predictions. We also identified Leishmania major threonyl-tRNA synthetase (ThrRS) inhibitors from the same library. We discuss why chemotherapies targeting multiple aaRSs should be less prone to the evolution of resistance than monotherapeutic or synergistic combination chemotherapies targeting only one aaRS.


Assuntos
Alanina-tRNA Ligase/antagonistas & inibidores , Antiprotozoários/farmacologia , Inibidores Enzimáticos/farmacologia , Leishmania/enzimologia , Proteínas de Protozoários/antagonistas & inibidores , Treonina-tRNA Ligase/antagonistas & inibidores , Trypanosoma/efeitos dos fármacos , Alanina-tRNA Ligase/genética , Alanina-tRNA Ligase/metabolismo , Antiprotozoários/química , Inibidores Enzimáticos/química , Humanos , Leishmania/efeitos dos fármacos , Leishmania/genética , Leishmaniose/parasitologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Treonina-tRNA Ligase/genética , Treonina-tRNA Ligase/metabolismo , Trypanosoma/enzimologia , Trypanosoma/genética , Tripanossomíase/parasitologia
12.
BMC Evol Biol ; 19(1): 224, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31818253

RESUMO

BACKGROUND: Eukaryotes acquired the trait of oxygenic photosynthesis through endosymbiosis of the cyanobacterial progenitor of plastid organelles. Despite recent advances in the phylogenomics of Cyanobacteria, the phylogenetic root of plastids remains controversial. Although a single origin of plastids by endosymbiosis is broadly supported, recent phylogenomic studies are contradictory on whether plastids branch early or late within Cyanobacteria. One underlying cause may be poor fit of evolutionary models to complex phylogenomic data. RESULTS: Using Posterior Predictive Analysis, we show that recently applied evolutionary models poorly fit three phylogenomic datasets curated from cyanobacteria and plastid genomes because of heterogeneities in both substitution processes across sites and of compositions across lineages. To circumvent these sources of bias, we developed CYANO-MLP, a machine learning algorithm that consistently and accurately phylogenetically classifies ("phyloclassifies") cyanobacterial genomes to their clade of origin based on bioinformatically predicted function-informative features in tRNA gene complements. Classification of cyanobacterial genomes with CYANO-MLP is accurate and robust to deletion of clades, unbalanced sampling, and compositional heterogeneity in input tRNA data. CYANO-MLP consistently classifies plastid genomes into a late-branching cyanobacterial sub-clade containing single-cell, starch-producing, nitrogen-fixing ecotypes, consistent with metabolic and gene transfer data. CONCLUSIONS: Phylogenomic data of cyanobacteria and plastids exhibit both site-process heterogeneities and compositional heterogeneities across lineages. These aspects of the data require careful modeling to avoid bias in phylogenomic estimation. Furthermore, we show that amino acid recoding strategies may be insufficient to mitigate bias from compositional heterogeneities. However, the combination of our novel tRNA-specific strategy with machine learning in CYANO-MLP appears robust to these sources of bias with high accuracy in phyloclassification of cyanobacterial genomes. CYANO-MLP consistently classifies plastids as late-branching Cyanobacteria, consistent with independent evidence from signature-based approaches and some previous phylogenetic studies.


Assuntos
Cianobactérias/genética , Eucariotos/citologia , Eucariotos/genética , Plastídeos/genética , Evolução Biológica , Modelos Biológicos , Fotossíntese , Filogenia , RNA de Transferência , Simbiose
13.
J Immunol ; 201(1): 31-40, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29743314

RESUMO

CD8 T cells can play both a protective and pathogenic role in inflammation and autoimmune development. Recent studies have highlighted the ability of CD8 T cells to function as T follicular helper (Tfh) cells in the germinal center in the context of infection. However, whether this phenomenon occurs in autoimmunity and contributes to autoimmune pathogenesis is largely unexplored. In this study, we show that CD8 T cells acquire a CD4 Tfh profile in the absence of functional regulatory T cells in both the IL-2-deficient and scurfy mouse models. Depletion of CD8 T cells mitigates autoimmune pathogenesis in IL-2-deficient mice. CD8 T cells express the B cell follicle-localizing chemokine receptor CXCR5, a principal Tfh transcription factor Bcl6, and the Tfh effector cytokine IL-21. CD8 T cells localize to the B cell follicle, express B cell costimulatory proteins, and promote B cell differentiation and Ab isotype class switching. These data reveal a novel contribution of autoreactive CD8 T cells to autoimmune disease, in part, through CD4 follicular-like differentiation and functionality.


Assuntos
Anemia Hemolítica Autoimune/imunologia , Anemia Hemolítica Autoimune/patologia , Linfócitos T CD8-Positivos/imunologia , Switching de Imunoglobulina/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Autoimunidade/imunologia , Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Eritrócitos/imunologia , Feminino , Interleucina-2/genética , Interleucinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , Receptores CXCR5/metabolismo
14.
Genome Biol Evol ; 9(7): 1971-1977, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28810711

RESUMO

Candida albicans is the most common cause of life-threatening fungal infections in humans, especially in immunocompromised individuals. Crucial to its success as an opportunistic pathogen is the considerable dynamism of its genome, which readily undergoes genetic changes generating new phenotypes and shaping the evolution of new strains. Candida africana is an intriguing C. albicans biovariant strain that exhibits remarkable genetic and phenotypic differences when compared with standard C. albicans isolates. Candida africana is well-known for its low degree of virulence compared with C. albicans and for its inability to produce chlamydospores that C. albicans, characteristically, produces under certain environmental conditions. Chlamydospores are large, spherical structures, whose biological function is still unknown. For this reason, we have sequenced, assembled, and annotated the whole transcriptomes obtained from an efficient C. albicans chlamydospore-producing clinical strain (GE1), compared with the natural chlamydospore-negative C. africana clinical strain (CBS 11016). The transcriptomes of both C. albicans (GE1) and C. africana (CBS 11016) clinical strains, grown under chlamydospore-inducing conditions, were sequenced and assembled into 7,442 (GE1 strain) and 8,370 (CBS 11016 strain) high quality transcripts, respectively. The release of the first assembly of the C. africana transcriptome will allow future comparative studies to better understand the biology and evolution of this important human fungal pathogen.


Assuntos
Candida albicans/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Esporos Fúngicos/genética , Transcriptoma , Candida albicans/classificação , Regulação Fúngica da Expressão Gênica , Especificidade da Espécie
15.
Front Genet ; 6: 172, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26042145

RESUMO

FAST (FAST Analysis of Sequences Toolbox) provides simple, powerful open source command-line tools to filter, transform, annotate and analyze biological sequence data. Modeled after the GNU (GNU's Not Unix) Textutils such as grep, cut, and tr, FAST tools such as fasgrep, fascut, and fastr make it easy to rapidly prototype expressive bioinformatic workflows in a compact and generic command vocabulary. Compact combinatorial encoding of data workflows with FAST commands can simplify the documentation and reproducibility of bioinformatic protocols, supporting better transparency in biological data science. Interface self-consistency and conformity with conventions of GNU, Matlab, Perl, BioPerl, R, and GenBank help make FAST easy and rewarding to learn. FAST automates numerical, taxonomic, and text-based sorting, selection and transformation of sequence records and alignment sites based on content, index ranges, descriptive tags, annotated features, and in-line calculated analytics, including composition and codon usage. Automated content- and feature-based extraction of sites and support for molecular population genetic statistics make FAST useful for molecular evolutionary analysis. FAST is portable, easy to install and secure thanks to the relative maturity of its Perl and BioPerl foundations, with stable releases posted to CPAN. Development as well as a publicly accessible Cookbook and Wiki are available on the FAST GitHub repository at https://github.com/tlawrence3/FAST. The default data exchange format in FAST is Multi-FastA (specifically, a restriction of BioPerl FastA format). Sanger and Illumina 1.8+ FastQ formatted files are also supported. FAST makes it easier for non-programmer biologists to interactively investigate and control biological data at the speed of thought.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA