Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Genom ; 4(4): 100537, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38604128

RESUMO

Transcriptional dysregulation is a hallmark of diffuse large B cell lymphoma (DLBCL), as transcriptional regulators are frequently mutated. However, our mechanistic understanding of how normal transcriptional programs are co-opted in DLBCL has been hindered by a lack of methodologies that provide the temporal resolution required to separate direct and indirect effects on transcriptional control. We applied a chemical-genetic approach to engineer the inducible degradation of the transcription factor FOXO1, which is recurrently mutated (mFOXO1) in DLBCL. The combination of rapid degradation of mFOXO1, nascent transcript detection, and assessment of chromatin accessibility allowed us to identify the direct targets of mFOXO1. mFOXO1 was required to maintain accessibility at specific enhancers associated with multiple oncogenes, and mFOXO1 degradation impaired RNA polymerase pause-release at some targets. Wild-type FOXO1 appeared to weakly regulate many of the same targets as mFOXO1 and was able to complement the degradation of mFOXO1 in the context of AKT inhibition.


Assuntos
Proteína Forkhead Box O1 , Sequências Reguladoras de Ácido Nucleico , Humanos , Proteína Forkhead Box O1/genética , Linfoma Difuso de Grandes Células B/genética , Fatores de Transcrição/genética
2.
Trends Cancer ; 10(1): 65-75, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37722945

RESUMO

Transcriptional dysregulation is a key step in oncogenesis, but our understanding of transcriptional control has relied on genetic approaches that are slow and allow for compensation. Chemical-genetic approaches have shortened the time frame for the analysis of transcription factors from days or weeks to minutes. These studies show that while DNA-binding proteins bind to thousands of sites, they are directly required to regulate only a small cadre of genes. Moreover, these transcriptional control networks are far more distinct, with much less overlap and interconnectivity than predicted from DNA binding. The identified direct targets can then be used to dissect the mechanism of action of these factors, which could identify ways to therapeutically manipulate these oncogenic transcriptional control networks.


Assuntos
Regulação da Expressão Gênica , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Redes Reguladoras de Genes
3.
bioRxiv ; 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36945622

RESUMO

Microglia are the primary phagocytes in the central nervous system and are responsible for clearing dead cells generated during development or disease. The phagocytic process shapes the phenotype of the microglia, which affects the local environment. A unique population of microglia reside in the ventricular-subventricular zone (V-SVZ) of neonatal mice, but how they influence this neurogenic niche is not well-understood. Here, we demonstrate that phagocytosis creates a pro-neurogenic microglial phenotype in the V-SVZ and that these microglia phagocytose apoptotic cells via the engulfment receptor Jedi-1. Deletion of Jedi-1 decreases apoptotic cell clearance, triggering the development of a neuroinflammatory phenotype, reminiscent of neurodegenerative and-age-associated microglia, that reduces neural precursor proliferation via elevated interleukin (IL)-1ß signaling; inhibition of IL-1 receptor rescues precursor proliferation in vivo. Together, these results reveal a critical role for Jedi-1 in connecting microglial phagocytic activity to a phenotype that promotes neurogenesis in the developing V-SVZ.

4.
Mol Cell ; 83(4): 507-522.e6, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36630954

RESUMO

Genetic models suggested that SMARCA5 was required for DNA-templated events including transcription, DNA replication, and DNA repair. We engineered a degron tag into the endogenous alleles of SMARCA5, a catalytic component of the imitation switch complexes in three different human cell lines to define the effects of rapid degradation of this key regulator. Degradation of SMARCA5 was associated with a rapid increase in global nucleosome repeat length, which may allow greater chromatin compaction. However, there were few changes in nascent transcription within the first 6 h of degradation. Nevertheless, we demonstrated a requirement for SMARCA5 to control nucleosome repeat length at G1/S and during the S phase. SMARCA5 co-localized with CTCF and H2A.Z, and we found a rapid loss of CTCF DNA binding and disruption of nucleosomal phasing around CTCF binding sites. This spatiotemporal analysis indicates that SMARCA5 is continuously required for maintaining nucleosomal spacing.


Assuntos
Cromatina , Proteínas Cromossômicas não Histona , Reparo do DNA , Nucleossomos , Humanos , Adenosina Trifosfatases/genética , Linhagem Celular , Proteínas Cromossômicas não Histona/genética , Proteínas Cromossômicas não Histona/metabolismo , Histonas/genética , Histonas/metabolismo , Nucleossomos/genética
5.
Mol Cell ; 82(23): 4428-4442.e7, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395771

RESUMO

Transcriptional control is a highly dynamic process that changes rapidly in response to various cellular and extracellular cues, making it difficult to define the mechanism of transcription factor function using slow genetic methods. We used a chemical-genetic approach to rapidly degrade a canonical transcriptional activator, PAX3-FOXO1, to define the mechanism by which it regulates gene expression programs. By coupling rapid protein degradation with the analysis of nascent transcription over short time courses and integrating CUT&RUN, ATAC-seq, and eRNA analysis with deep proteomic analysis, we defined PAX3-FOXO1 function at a small network of direct transcriptional targets. PAX3-FOXO1 degradation impaired RNA polymerase pause release and transcription elongation at most regulated gene targets. Moreover, the activity of PAX3-FOXO1 at enhancers controlling this core network was surprisingly selective, affecting single elements in super-enhancers. This combinatorial analysis indicated that PAX3-FOXO1 was continuously required to maintain chromatin accessibility and enhancer architecture at regulated enhancers.


Assuntos
Proteômica , Sequências Reguladoras de Ácido Nucleico , Sequência de Bases , RNA Polimerases Dirigidas por DNA , Sequenciamento de Cromatina por Imunoprecipitação , Fatores de Transcrição
6.
Oncogene ; 40(38): 5718-5729, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34331013

RESUMO

Melanomas driven by loss of the NF1 tumor suppressor have a high risk of treatment failure and effective therapies have not been developed. Here we show that loss-of-function mutations of nf1 and pten result in aggressive melanomas in zebrafish, representing the first animal model of NF1-mutant melanomas harboring PTEN loss. MEK or PI3K inhibitors show little activity when given alone due to cross-talk between the pathways, and high toxicity when given together. The mTOR inhibitors, sirolimus, everolimus, and temsirolimus, were the most active single agents tested, potently induced tumor-suppressive autophagy, but not apoptosis. Because addition of the BCL2 inhibitor venetoclax resulted in compensatory upregulation of MCL1, we established a three-drug combination composed of sirolimus, venetoclax, and the MCL1 inhibitor S63845. This well-tolerated drug combination potently and synergistically induces apoptosis in both zebrafish and human NF1/PTEN-deficient melanoma cells, providing preclinical evidence justifying an early-stage clinical trial in patients with NF1/PTEN-deficient melanoma.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/administração & dosagem , Inibidores de MTOR/administração & dosagem , Melanoma/tratamento farmacológico , Neurofibromina 1/genética , PTEN Fosfo-Hidrolase/genética , Pirimidinas/administração & dosagem , Sulfonamidas/administração & dosagem , Tiofenos/administração & dosagem , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Everolimo/administração & dosagem , Everolimo/farmacologia , Humanos , Mutação com Perda de Função , Inibidores de MTOR/farmacologia , Melanoma/genética , Melanoma/patologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Pirimidinas/farmacologia , Sirolimo/administração & dosagem , Sirolimo/análogos & derivados , Sirolimo/farmacologia , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra
7.
STAR Protoc ; 2(2): 100530, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34041503

RESUMO

Transcriptional changes happen within minutes; however, RNAi or genetic deletion requires days to weeks before transcription networks can be analyzed. This limitation has made it challenging to distinguish direct from indirect targets of sequence-specific transcription factors. This inability to define direct transcriptional targets hinders detailed studies of transcriptional mechanisms. This protocol combines rapid degradation of endogenous transcription factors with nascent transcript analysis to define the earliest, and likely direct, regulatory targets of transcription factors. For complete details on the use and execution of this protocol, please refer to Stengel et al., 2021).


Assuntos
Fatores de Transcrição , Transcrição Gênica , Animais , Células Cultivadas , Interferência de RNA , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Fatores de Transcrição/análise , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica/genética , Transcrição Gênica/fisiologia
8.
Elife ; 52016 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-27130733

RESUMO

Earlier reports showed that hyperplasia of sympathoadrenal cell precursors during embryogenesis in Nf1-deficient mice is independent of Nf1's role in down-modulating RAS-MAPK signaling. We demonstrate in zebrafish that nf1 loss leads to aberrant activation of RAS signaling in MYCN-induced neuroblastomas that arise in these precursors, and that the GTPase-activating protein (GAP)-related domain (GRD) is sufficient to suppress the acceleration of neuroblastoma in nf1-deficient fish, but not the hypertrophy of sympathoadrenal cells in nf1 mutant embryos. Thus, even though neuroblastoma is a classical "developmental tumor", NF1 relies on a very different mechanism to suppress malignant transformation than it does to modulate normal neural crest cell growth. We also show marked synergy in tumor cell killing between MEK inhibitors (trametinib) and retinoids (isotretinoin) in primary nf1a-/- zebrafish neuroblastomas. Thus, our model system has considerable translational potential for investigating new strategies to improve the treatment of very high-risk neuroblastomas with aberrant RAS-MAPK activation.


Assuntos
Expressão Gênica , Proteína Proto-Oncogênica N-Myc/biossíntese , Células-Tronco Neurais/fisiologia , Neuroblastoma/patologia , Neurofibromina 1/deficiência , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Animais , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA