Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Water Sci Technol ; 86(3): 410-431, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35960827

RESUMO

Hydraulic selection is a key feature of aerobic granular sludge (AGS) systems but existing aerobic granular sludge (AGS) models neglect those mechanisms: gradients over reactor height (Hreactor), selective removal of slow settling sludge, etc. This study aimed at evaluating to what extent integration of those additional processes into AGS models is needed, i.e., at demonstrating that model predictions (biomass inventory, microbial activities and effluent quality) are affected by such additional model complexity. We therefore developed a new AGS model that includes key features of full-scale AGS systems: fill-draw operation, selective sludge removal, distinct settling models for flocs/granules. We then compared predictions of our model to those of a fully mixed AGS model. Our results demonstrate that hydraulic selection can be predicted with an assembly of four continuous stirred tank reactors in series together with a correction code for plug-flow. Concentration gradients over the reactor height during settling/plug-flow feeding strongly impact the predictions of aerobic granular sludge models in terms of microbial selection, microbial activities and ultimately effluent quality. Hydraulic selection is a key to predict selection of storing microorganisms (phosphorus-accumulating organisms (PAO) and glycogen-accumulating organisms (GAO)) and in turn effluent quality in terms of total phosphorus, and for predicting effluent solid concentration and dynamic during plug-flow feeding.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Hidrodinâmica , Fósforo
2.
Water Res X ; 7: 100050, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32309797

RESUMO

The removal or degradation of particulate organic matter is a crucial part in biological wastewater treatment. This is even more valid with respect to aerobic granular sludge and the impact of particulate organic matter on the formation and stability of the entire granulation process. Before the organic part of the particulate matter can be hydrolyzed and finally degraded by the microorganism, the particles have to be transported towards and retained within the granulated biomass. The understanding of these processes is currently very limited. Thus, the present study aimed at visualizing the transport of particulate organic matter into and through an aerobic granular sludge bed. Magnetic Resonance Imaging (MRI) was successfully applied to resolve the different fractions of a granular sludge bed over time and space. Quantification and merging of 3D data sets allowed for a clear determination of the particle distribution within the granular sludge bed. Dextran coated super paramagnetic iron oxide nanoparticles (SPIONs, d p  =  38 ± 10 nm) served as model particles for colloidal particles. Microcrystalline cellulose particles ( d p  = 1-20 µm) tagged with paramagnetic iron oxide were applied as a reference for toilet paper, which is a major fraction of particulate matter in domestic wastewater. The results were supplemented by the use of real wastewater particles with a size fraction between 28 and 100 µm. Colloidal SPIONs distributed evenly over the granular sludge bed penetrating the granules up to 300 µm. Rinsing the granular sludge bed proved their immobilization. Microcrystalline cellulose and real wastewater particles in the micrometer range accumulated in the void space between settled granules. An almost full retention of the wastewater particles was observed within the first 20 mm of the granular sludge bed. Moreover, the formation of particle layers indicates that most of the micrometer-sized particles are not attached to the biomass and remain mobile. Consequently, these particles are released into the bulk phase when the granulated sludge bed is resuspended.

3.
Water Res X ; 7: 100048, 2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32154508

RESUMO

Simultaneous nitrification-denitrification (SND) is, in theory, a key advantage of aerobic granular sludge systems over conventional activated sludge systems. But practical experience and literature suggests that SND and thus total nitrogen removal are limited during treatment of municipal wastewater using AGS systems. This study thus aims at quantifying the extent and understanding the mechanisms of SND during treatment of municipal wastewater with aerobic granular sludge (AGS) systems. Experiments (long-term and batch-tests) as well as mathematical modelling were performed. Our experimental results demonstrate that SND is significantly limited during treatment of low-strength municipal wastewater with AGS systems (14-39%), while almost full SND is observed when treating synthetic influent containing only diffusible substrate (90%). Our simulations demonstrate that the main mechanisms behind limited SND are (1) the dynamics of anoxic zone formation inside the granule, (2) the diffusibility and availability of electron-donors in those zones and (3) the aeration mode. The development of anoxic zones is driven by the utilisation of oxygen in the upper layers of the granule leading to transport limitations of oxygen inside the granule; this effect is closely linked to granule size and wastewater composition. Development of anoxic zones during the aerobic phase is limited for small granules at constant aeration at bulk dissolved oxygen (DO) concentration of 2 mgO2 L-1, and anoxic zones only develop during a brief period of the aerated phase for large granules. Modelling results further indicate that a large fraction of electron-donors are actually utilised in aerobic rather than anoxic redox zones - in the bulk or at the granule surface. Thus, full SND cannot be achieved with AGS treating low strength municipal wastewater if a constant DO is maintained during the aeration phase. Optimised aeration strategies are therefore required. 2-step and alternating aeration are tested successfully using mathematical modelling and increase TN removal to 40-79%, without compromising nitrification, and by shifting electron-donor utilisation towards anoxic redox conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA