Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 290(13): 8482-99, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25601083

RESUMO

The maintenance of endoplasmic reticulum (ER) homeostasis is a critical aspect of determining cell fate and requires a properly functioning unfolded protein response (UPR). We have discovered a previously unknown role of a post-translational modification termed adenylylation/AMPylation in regulating signal transduction events during UPR induction. A family of enzymes, defined by the presence of a Fic (filamentation induced by cAMP) domain, catalyzes this adenylylation reaction. The human genome encodes a single Fic protein, called HYPE (Huntingtin yeast interacting protein E), with adenylyltransferase activity but unknown physiological target(s). Here, we demonstrate that HYPE localizes to the lumen of the endoplasmic reticulum via its hydrophobic N terminus and adenylylates the ER molecular chaperone, BiP, at Ser-365 and Thr-366. BiP functions as a sentinel for protein misfolding and maintains ER homeostasis. We found that adenylylation enhances BiP's ATPase activity, which is required for refolding misfolded proteins while coping with ER stress. Accordingly, HYPE expression levels increase upon stress. Furthermore, siRNA-mediated knockdown of HYPE prevents the induction of an unfolded protein response. Thus, we identify HYPE as a new UPR regulator and provide the first functional data for Fic-mediated adenylylation in mammalian signaling.


Assuntos
Proteínas de Transporte/fisiologia , Proteínas de Membrana/fisiologia , Nucleotidiltransferases/fisiologia , Processamento de Proteína Pós-Traducional , Resposta a Proteínas não Dobradas , Fator 6 Ativador da Transcrição/metabolismo , Apoptose , Sobrevivência Celular , Retículo Endoplasmático/metabolismo , Chaperona BiP do Retículo Endoplasmático , Glicosilação , Células HEK293 , Células HeLa , Proteínas de Choque Térmico/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Células MCF-7 , Estrutura Terciária de Proteína , Transporte Proteico , Transdução de Sinais , Regulação para Cima , eIF-2 Quinase/metabolismo
2.
J Biol Chem ; 286(37): 32834-42, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21795713

RESUMO

A new family of adenylyltransferases, defined by the presence of a Fic domain, was recently discovered to catalyze the addition of adenosine monophosphate (AMP) to Rho GTPases (Yarbrough, M. L., Li, Y., Kinch, L. N., Grishin, N. V., Ball, H. L., and Orth, K. (2009) Science 323, 269-272; Worby, C. A., Mattoo, S., Kruger, R. P., Corbeil, L. B., Koller, A., Mendez, J. C., Zekarias, B., Lazar, C., and Dixon, J. E. (2009) Mol. Cell 34, 93-103). This adenylylation event inactivates Rho GTPases by preventing them from binding to their downstream effectors. We reported that the Fic domain(s) of the immunoglobulin-binding protein A (IbpA) from the pathogenic bacterium Histophilus somni adenylylates mammalian Rho GTPases, RhoA, Rac1, and Cdc42, thereby inducing host cytoskeletal collapse, which allows H. somni to breach alveolar barriers and cause septicemia. The IbpA-mediated adenylylation occurs on a functionally critical tyrosine in the switch 1 region of these GTPases. Here, we conduct a detailed characterization of the IbpA Fic2 domain and compare its activity with other known Fic adenylyltransferases, VopS (Vibrio outer protein S) from the bacterial pathogen Vibrio parahaemolyticus and the human protein HYPE (huntingtin yeast interacting protein E; also called FicD). We also included the Fic domains of the secreted protein, PfhB2, from the opportunistic pathogen Pasteurella multocida, in our analysis. PfhB2 shares a common domain architecture with IbpA and contains two Fic domains. We demonstrate that the PfhB2 Fic domains also possess adenylyltransferase activity that targets the switch 1 tyrosine of Rho GTPases. Comparative kinetic and phylogenetic analyses of IbpA-Fic2 with the Fic domains of PfhB2, VopS, and HYPE reveal important aspects of their specificities for Rho GTPases and nucleotide usage and offer mechanistic insights for determining nucleotide and substrate specificities for these enzymes. Finally, we compare the evolutionary lineages of Fic proteins with those of other known adenylyltransferases.


Assuntos
Proteínas de Bactérias/química , Evolução Molecular , Proteínas de Membrana/química , Nucleotidiltransferases/química , Pasteurellaceae/enzimologia , Proteínas de Bactérias/genética , Humanos , Proteínas de Membrana/genética , Nucleotidiltransferases/genética , Pasteurellaceae/genética , Estrutura Terciária de Proteína , Vibrio parahaemolyticus/enzimologia , Vibrio parahaemolyticus/genética
3.
Mol Cell ; 34(1): 93-103, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19362538

RESUMO

We show that the secreted antigen, IbpA, of the respiratory pathogen Histophilus somni induces cytotoxicity in mammalian cells via its Fic domains. Fic domains are defined by a core HPFxxGNGR motif and are conserved from bacteria to humans. We demonstrate that the Fic domains of IbpA catalyze a unique reversible adenylylation event that uses ATP to add an adenosine monophosphate (AMP) moiety to a conserved tyrosine residue in the switch I region of Rho GTPases. This modification requires the conserved histidine of the Fic core motif and renders Rho GTPases inactive. We further demonstrate that the only human protein containing a Fic domain, huntingtin yeast-interacting protein E (HYPE), also adenylylates Rho GTPases in vitro. Thus, we classify Fic domain-containing proteins as a class of enzymes that mediate bacterial pathogenesis as well as a previously unrecognized eukaryotic posttranslational modification that may regulate key signaling events.


Assuntos
Antígenos de Bactérias/fisiologia , Proteínas de Bactérias/fisiologia , Pasteurellaceae/imunologia , Transdução de Sinais , Fatores de Virulência/fisiologia , Citoesqueleto de Actina/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Antígenos de Bactérias/química , Proteínas de Bactérias/química , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Cisteína Endopeptidases/química , Células HeLa , Histidina/química , Histidina/metabolismo , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Dados de Sequência Molecular , Nucleotidiltransferases , Pasteurellaceae/patogenicidade , Diester Fosfórico Hidrolases/farmacologia , Alinhamento de Sequência , Especificidade por Substrato , Tirosina/metabolismo , Fatores de Virulência/química , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/metabolismo
4.
J Cell Biol ; 178(7): 1265-78, 2007 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-17893247

RESUMO

Bacterial toxins and effector proteins hijack eukaryotic enzymes that are spatially localized and display rapid signaling kinetics. However, the molecular mechanisms by which virulence factors engage highly dynamic substrates in the host cell environment are poorly understood. Here, we demonstrate that the enteropathogenic Escherichia coli (EPEC) type III effector protein EspF nucleates a multiprotein signaling complex composed of eukaryotic sorting nexin 9 (SNX9) and neuronal Wiskott-Aldrich syndrome protein (N-WASP). We demonstrate that a specific and high affinity association between EspF and SNX9 induces membrane remodeling in host cells. These membrane-remodeling events are directly coupled to N-WASP/Arp2/3-mediated actin nucleation. In addition to providing a biochemical mechanism of EspF function, we find that EspF dynamically localizes to membrane-trafficking organelles in a spatiotemporal pattern that correlates with SNX9 and N-WASP activity in living cells. Thus, our findings suggest that the EspF-dependent assembly of SNX9 and N-WASP represents a novel form of signaling mimicry used to promote EPEC pathogenesis and gastrointestinal disease.


Assuntos
Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Células Eucarióticas/metabolismo , Transdução de Sinais , Complexo 2-3 de Proteínas Relacionadas à Actina/metabolismo , Actinas/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Proteínas de Transporte/química , Polaridade Celular , Sobrevivência Celular , Cães , Células Epiteliais/citologia , Proteínas de Escherichia coli/química , Evolução Molecular , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Ligantes , Camundongos , Dados de Sequência Molecular , Ligação Proteica , Transporte Proteico , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteína Neuronal da Síndrome de Wiskott-Aldrich/metabolismo , Domínios de Homologia de src
5.
Cell ; 124(1): 133-45, 2006 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-16413487

RESUMO

Many bacterial pathogens use the type III secretion system to inject "effector" proteins into host cells. Here, we report the identification of a 24 member effector protein family found in pathogens including Salmonella, Shigella, and enteropathogenic E. coli. Members of this family subvert host cell function by mimicking the signaling properties of Ras-like GTPases. The effector IpgB2 stimulates cellular responses analogous to GTP-active RhoA, whereas IpgB1 and Map function as the active forms of Rac1 and Cdc42, respectively. These effectors do not bind guanine nucleotides or have sequences corresponding the conserved GTPase domain, suggesting that they are functional but not structural mimics. However, several of these effectors harbor intracellular targeting sequences that contribute to their signaling specificities. The activities of IpgB2, IpgB1, and Map are dependent on an invariant WxxxE motif found in numerous effectors leading to the speculation that they all function by a similar molecular mechanism.


Assuntos
Proteínas de Bactérias/fisiologia , Mimetismo Molecular/fisiologia , Transdução de Sinais/fisiologia , Proteínas rac1 de Ligação ao GTP/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Escherichia coli/classificação , Escherichia coli/fisiologia , Células HeLa , Humanos , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Dados de Sequência Molecular , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae , Salmonella typhi/fisiologia , Shigella flexneri/fisiologia , Técnicas do Sistema de Duplo-Híbrido , Proteína cdc42 de Ligação ao GTP/fisiologia , Proteínas rac1 de Ligação ao GTP/genética
6.
Mol Biol Cell ; 16(4): 2049-57, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15673616

RESUMO

The sorting nexin (SNX) family of proteins is characterized by sequence-related phox homology (PX) domains. A minority of PX domains bind with high affinity to phosphatidylinositol 3-phosphate [PI(3)P], whereas the majority of PX domains exhibit low affinity that is insufficient to target them to vesicles. SNX1 is located on endosomes, but its low affinity PX domain fails to localize in vivo. The NMR structure of the PX domain of SNX1 reveals an overall fold that is similar to high-affinity PX domains. However, the phosphatidylinositol (PI) binding pocket of the SNX1 PX domain is incomplete; regions of the pocket that are well defined in high-affinity PX domains are highly mobile in SNX1. Some of this mobility is lost upon binding PI(3)P. The C-terminal domain of SNX1 is a long helical dimer that localizes to vesicles but not to the early endosome antigen-1-containing vesicles where endogenous SNX1 resides. Thus, the obligate dimerization of SNX1 that is driven by the C-terminal domain creates a high-affinity PI binding species that properly targets the holo protein to endosomes.


Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Linhagem Celular , Humanos , Proteínas Imediatamente Precoces , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Proteínas Nucleares/metabolismo , Fosfatidilinositóis/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Transporte Proteico , Proteínas de Transporte Vesicular/genética
7.
Mol Biol Cell ; 15(12): 5470-80, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15469991

RESUMO

Ligand binding to cell surface receptors initiates both signal transduction and endocytosis. Although signaling may continue within the endocytic compartment, down-regulation is the major mechanism that controls the concentration of cell surface receptors, their ability to receive environmental signals, and the ultimate strength of biological signaling. Internalization, recycling, and trafficking of receptor tyrosine kinases (RTKs) within the endosome compartment are each regulated to control the overall process of down-regulation. We have identified the Na(+)/H(+) exchanger regulatory factor (NHERF) as an important molecular component that stabilizes epidermal growth factor receptors (EGFRs) at the cell surface to restrict receptor down-regulation. The NH(2)-terminal PDZ domain (PDZ 1) of NHERF specifically binds to an internal peptide motif located within the COOH-terminal regulatory domain of EGFR. Expression of NHERF slows the rate of EGF-induced receptor degradation. A point mutation that abolishes the PDZ 1 recognition sequence of EGFR enhances the rate of ligand-induced endocytosis and down-regulation of EGFR. Similarly, expression of a dominant negative mutant of NHERF enhances EGF-induced receptor down-regulation. In contrast to beta-adrenergic receptors where NHERF enhances recycling of internalized receptors, NHERF stabilizes EGFR at the cell surface and slows the rate of endocytosis without affecting recycling. Although the mechanisms differ, for both RTKs and G protein-coupled receptors, the overall effect of NHERF is to enhance the fraction of receptors present at the cell surface.


Assuntos
Membrana Celular/metabolismo , Receptores ErbB/metabolismo , Fosfoproteínas/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Linhagem Celular , Regulação para Baixo , Ativação Enzimática , Receptores ErbB/química , Receptores ErbB/genética , Expressão Gênica , Humanos , Ligantes , Camundongos , Dados de Sequência Molecular , Mutação/genética , Fosfoproteínas/química , Fosfoproteínas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Trocadores de Sódio-Hidrogênio
8.
Proc Natl Acad Sci U S A ; 99(10): 6767-72, 2002 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-11997453

RESUMO

There are 17 human members of the sorting nexin (SNX) family of proteins that contain Phox (PX) domains. Yeast orthologs function in vesicular trafficking and mammalian proteins have been implicated in endocytic trafficking of cell surface receptors. The first member of this family, SNX1, was identified via interaction with the epidermal growth factor receptor. The present studies indicate that SNX1 and SNX2 are colocalized to tubulovesicular endosomal membranes and this localization depends on PI 3-kinase activity. Point mutations in the PX domain that abolish recognition of phosphorylated phosphatidylinositol (PtdIns) in vitro abolish vesicle localization in vivo indicating that lipid binding by the PX domain is necessary for localization to vesicle membranes. Deletion of a predicted coiled-coil region in the COOH terminus of SNX1 also abolished vesicle localization, indicating that this helical domain, too, is necessary for SNX1 localization. Thus, both PX domain recognition of PtdIns and COOH terminal helical domains are necessary for localization of SNX1 with neither alone being sufficient. Regulated overexpression of the NH(2) terminus of SNX1 containing the PX domain decreased the rate of ligand-induced epidermal growth factor receptor degradation, an effect consistent with inhibition of endogenous SNX1 function in the endosome compartment. SNX1 thus functions in regulating trafficking in the endosome compartment via PX domain recognition of phosphorylated PtdIns and via interaction with other protein components.


Assuntos
Proteínas de Transporte/metabolismo , Endossomos/metabolismo , Receptores ErbB/metabolismo , Proteínas de Transporte Vesicular , Sequência de Aminoácidos , Animais , Células COS , Proteínas de Transporte/genética , Chlorocebus aethiops , Regulação para Baixo , Expressão Gênica , Dados de Sequência Molecular , Fosfatos de Fosfatidilinositol/metabolismo , Coelhos , Frações Subcelulares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA