Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arh Hig Rada Toksikol ; 75(2): 137-146, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38963137

RESUMO

Traditional medicine has used sage (Salvia officinalis L.) preparations for centuries to prevent and treat various inflammatory and oxidative stress-induced conditions. The aim of this in vitro study was to determine the bioactive properties of a sage leave extract obtained with environmentally friendly aqueous extraction and lyophilisation in primary human peripheral blood cells. To that end we measured the total phenolic and flavonoid content (TPC and TFC, respectively) with gas chromatography-mass spectrometry (GC-MS). Non-cytotoxic concentrations determined with the trypan blue assay were used to assess the antioxidant (DPPH, ABTS, and PAB assay), antigenotoxic (CBMN assay), immunomodulatory (IL-1ß and TNF-α), and neuroprotective effects (AChE inhibition). The extract contained high TPC (162 mg GAE/g of dry extract) and TFC (39.47 mg QE/g of dry extract) concentrations, while ß-thujone content was unexpectedly low (below 0.9 %). Strong radical-scavenging activity combined with glutathione reductase activation led to a decrease in basal and H2O2-induced oxidative stress and DNA damage. A decrease in TNF-α and increase in IL-1ß levels suggest complex immunomodulatory response that could contribute to antioxidant and, together with mild AChE inhibition, neuroprotective effects. Overall, this study has demonstrated that aqueous sage leave extract reduces the levels of thujone, 1,8-cineole, pinene, and terpene ketones that could be toxic in high concentrations, while maintaining high concentrations of biologically active protective compounds which have a potential to prevent and/or treat inflammatory and oxidative stress-related conditions.


Assuntos
Inflamação , Leucócitos Mononucleares , Estresse Oxidativo , Extratos Vegetais , Salvia officinalis , Humanos , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Leucócitos Mononucleares/efeitos dos fármacos , Salvia officinalis/química , Inflamação/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Dano ao DNA/efeitos dos fármacos , Folhas de Planta/química
2.
Foods ; 13(12)2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38928831

RESUMO

Metals are integral components of the natural environment, and their presence in the food supply is inevitable and complex. While essential metals such as sodium, potassium, magnesium, calcium, iron, zinc, and copper are crucial for various physiological functions and must be consumed through the diet, others, like lead, mercury, and cadmium, are toxic even at low concentrations and pose serious health risks. This study comprehensively analyzes the presence, importance, and consequences of metals in the food chain. We explore the pathways through which metals enter the food supply, their distribution across different food types, and the associated health implications. By examining current regulatory standards for maximum allowable levels of various metals, we highlight the importance of ensuring food safety and protecting public health. Furthermore, this research underscores the need for continuous monitoring and management of metal content in food, especially as global agricultural and food production practices evolve. Our findings aim to inform dietary recommendations, food fortification strategies, and regulatory policies, ultimately contributing to safer and more nutritionally balanced diets.

3.
Int J Mol Sci ; 25(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38256107

RESUMO

We have synthesized 22 C-1 functionalized-N-aryl-1,2,3,4-tetrahydroisoquinoline derivatives showing biological activities towards cholinergic enzymes. Synthesis was performed using visible-light-promoted photo-redox chemistry, starting from a common intermediate, and the application of this synthetic methodology drastically simplified synthetic routes and purification of desired compounds. All synthesized derivates were divided into four groups based on the substituents in the C-1 position, and their inhibition potencies towards two cholinergic enzymes, acetyl- and butyrylcholinesterase were evaluated. Most potent derivatives were selected, and kinetic analysis was further carried out to obtain insights into the mechanisms of inhibition of these two enzymes. Further validation of the mode of inhibition of cholinergic enzymes by the two most potent THIQ compounds, 3c and 3i, was performed using fluorescence-quenching titration studies. Molecular docking studies further confirmed the proposed mechanism of enzymes' inhibition. In silico predictions of physicochemical properties, pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of the selected most potent derivatives were performed using Swiss ADME tool. This was followed by UPLC-assisted log P determination and in vitro BBB permeability studies performed in order to assess the potential of the synthesized compounds to pass the BBB.


Assuntos
Doença de Alzheimer , Tetra-Hidroisoquinolinas , Humanos , Doença de Alzheimer/tratamento farmacológico , Butirilcolinesterase , Cinética , Simulação de Acoplamento Molecular , Inibidores Enzimáticos , Tetra-Hidroisoquinolinas/farmacologia
4.
Foods ; 12(12)2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37372573

RESUMO

The increasing usage of pesticides to boost food production inevitably leads to their presence in food samples, requiring the development of efficient methods for their removal. Here, we show that carefully tuned viscose-derived activated carbon fibers can be used for malathion and chlorpyrifos removal from liquid samples, even in complex matrices such as lemon juice and mint ethanol extract. Adsorbents were produced using the Design of Experiments protocol for varying activation conditions (carbonization at 850 °C; activation temperature between 670 and 870 °C; activation time from 30 to 180 min; and CO2 flow rate from 10 to 80 L h-1) and characterized in terms of physical and chemical properties (SEM, EDX, BET, FTIR). Pesticide adsorption kinetics and thermodynamics were then addressed. It was shown that some of the developed adsorbents are also capable of the selective removal of chlorpyrifos in the presence of malathion. The selected materials were not affected by complex matrices of real samples. Moreover, the adsorbent can be regenerated at least five times without pronounced performance losses. We suggest that the adsorptive removal of food contaminants can effectively improve food safety and quality, unlike other methods currently in use, which negatively affect the nutritional value of food products. Finally, data-based models trained on well-characterized materials libraries can direct the synthesis of novel adsorbents for the desired application in food processing.

5.
Foods ; 12(12)2023 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-37372608

RESUMO

Coffee is one of the most popular beverages, with around 10.5 million tons manufactured annually. The same amount of spent coffee grounds (SCGs) might harm the environment if disposed of carelessly. On the other hand, pesticide contamination in food and biowaste is a rising problem. Because pesticides are hazardous and can cause serious health consequences, it is critical to understand how they interact with food biowaste materials. However, it is also a question if biowaste can be used to remediate rising pesticide residues in the environment. This study investigated the interactions of SCGs with the organophosphate pesticides malathion (MLT) and chlorpyrifos (CHP) and addressed the possibility of using SCGs as adsorbents for the removal of these pesticides from water and fruit extracts. The kinetics of MLT and CHP adsorption on SCGs fits well with the pseudo-first-order kinetic model. The Langmuir isotherm model best describes the adsorption process, giving the maximal adsorption capacity for MLT as 7.16 mg g-1 and 7.00 mg g-1 for CHP. Based on the thermodynamic analysis, it can be deduced that MLT adsorption on SCGs is exothermic, while CHP adsorption is an endothermic process. The adsorption efficiency of MLT and CHP using SCGs in a complicated matrix of fruit extracts remained constant. The neurotoxicity results showed that no more toxic products were formed during adsorption, indicating that SCGs are a safe-to-use adsorbent for pesticide removal in water and fruit extracts.

6.
Artigo em Inglês | MEDLINE | ID: mdl-36901562

RESUMO

Growing pollution is making it necessary to find new strategies and materials for the removal of undesired compounds from the environment. Adsorption is still one of the simplest and most efficient routes for the remediation of air, soil, and water. However, the choice of adsorbent for a given application ultimately depends on its performance assessment results. Here, we show that the uptake of and capacity for dimethoate adsorption by different viscose-derived (activated) carbons strongly depend on the adsorbent dose applied in the adsorption measurements. The specific surface areas of the investigated materials varied across a wide range from 264 m2 g-1 to 2833 m2 g-1. For a dimethoate concentration of 5 × 10-4 mol L-1 and a high adsorbent dose of 10 mg mL-1, the adsorption capacities were all below 15 mg g-1. In the case of high-surface-area activated carbons, the uptakes were almost 100% under identical conditions. However, when the adsorbent dose was reduced to 0.01 mg mL-1, uptake was significantly reduced, but adsorption capacities as high as 1280 mg g-1 were obtained. Further, adsorption capacities were linked to adsorbents' physical and chemical properties (specific surface area, pore size distribution, chemical composition), and thermodynamic parameters for the adsorption process were evaluated. Based on the Gibbs free energy of the adsorption process, it can be suggested that physisorption was operative for all studied adsorbents. Finally, we suggest that a proper comparison of different adsorbents requires standardization of the protocols used to evaluate pollutant uptakes and adsorption capacities.


Assuntos
Dimetoato , Poluentes Químicos da Água , Carvão Vegetal/química , Água/química , Poluição Ambiental , Adsorção
7.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012248

RESUMO

The study of the interactions between nanoparticles (NPs) and proteins has had a pivotal role in facilitating the understanding of biological effects and safe application of NPs after exposure to the physiological environment. Herein, for the first time, the interaction between L-methionine capped silver nanoparticles (AgMet), and bovine serum albumin (BSA) is investigated in order to predict the fate of AgMet after its contact with the most abundant blood transport protein. The detailed insights into the mechanism of interaction were achieved using different physicochemical techniques. The UV/Vis, TEM, and DLS were used for the characterization of the newly formed "entity", while the kinetic and thermodynamic parameters were utilized to describe the adsorption process. Additionally, the fluorescence quenching and synchronous fluorescence studies enabled the prediction of the binding affinity and gave us insight into the influence of the adsorption on the conformation state of the BSA. According to the best of our knowledge, for the first time, we show that BSA can be used as an external stabilizer agent which is able to induce the peptization of previously agglomerated AgMet. We believe that the obtained results could contribute to further improvement of AgNPs' performances as well as to the understanding of their in vivo behavior, which could contribute to their potential use in preclinical research studies.


Assuntos
Nanopartículas Metálicas , Coroa de Proteína , Nanopartículas Metálicas/química , Metionina , Soroalbumina Bovina/química , Prata/química , Espectrometria de Fluorescência
8.
Crit Rev Anal Chem ; : 1-25, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35435777

RESUMO

One of the lessons we learned from the COVID-19 pandemic is that the need for ultrasensitive detection systems is now more critical than ever. While sensors' sensitivity, portability, selectivity, and low cost are crucial, new ways to couple synergistic methods enable the highest performance levels. This review article critically discusses the synergetic combinations of optical and electrochemical methods. We also discuss three key application fields-energy, biomedicine, and environment. Finally, we selected the most promising approaches and examples, the open challenges in sensing, and ways to overcome them. We expect this work to set a clear reference for developing and understanding strategies, pros and cons of different combinations of electrochemical and optical sensors integrated into a single device.

9.
Molecules ; 27(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35268578

RESUMO

Extensive use of pesticides resulting in their accumulation in the environment presents a hazard for their non-target species, including humans. Hence, efficient remediation strategies are needed, and, in this sense, adsorption is seen as the most straightforward approach. We have studied activated carbon fibers (ACFs) derived from viscose fibers impregnated with diammonium hydrogen phosphate (DAHP). By changing the amount of DAHP in the impregnation step, the chemical composition and textural properties of ACFs are effectively tuned, affecting their performance for dimethoate removal from water. The prepared ACFs effectively reduced the toxicity of treated water samples, both deionized water solutions and spiked tap water samples, under batch conditions and in dynamic filtration experiments. Using the results of physicochemical characterization and dimethoate adsorption measurements, multiple linear regression models were made to reliably predict performance towards dimethoate removal from water. These models can be used to quickly screen among larger sets of possible adsorbents and guide the development of novel, highly efficient adsorbents for dimethoate removal from water.

10.
Environ Sci Pollut Res Int ; 29(23): 35138-35149, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35044608

RESUMO

The release and accumulation of pesticides in the environment require the development of novel sustainable technologies for their removal. While adsorption is a classical approach, the design of new materials with enhanced adsorption properties could rationalize the remediation routes and decrease potential risks for their non-target organisms, including humans. More importantly, the use of adsorbents and their synthesis should be implemented in a sustainable and environmentally friendly manner. In this contribution, we studied the adsorption of organophosphorus pesticides (OPs) dimethoate, malathion, and chlorpyrifos on viscose fiber-derived activated carbon fibers (ACFs). The most efficient adsorption was found for chlorpyrifos, followed by malathion and dimethoate, while material properties were correlated with OP uptake. These ACFs are extremely efficient for chlorpyrifos adsorption, with experimentally observed adsorption capacitances reaching 240 mg g-1. Detailed analysis suggests that chlorpyrifos is physisorbed on ACF surfaces and that increased surface hydrophilicity reduces the uptake. Studied ACFs have great potential for practical application. They can reduce OPs' concentrations to such levels that no acute neurotoxic effects of the studied OPs in spiked tap water samples are seen, even for starting concentrations up to 104 times higher than the allowed ones. Finally, this study presents possible guidance for developing even more efficient and environmentally friendly adsorbents for chlorpyrifos, the most toxic among studied OPs.


Assuntos
Clorpirifos , Praguicidas , Carvão Vegetal , Clorpirifos/análise , Dimetoato , Humanos , Malation/análise , Compostos Organofosforados
11.
Sensors (Basel) ; 21(12)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208587

RESUMO

Electrochemical sensors play a significant role in detecting chemical ions, molecules, and pathogens in water and other applications. These sensors are sensitive, portable, fast, inexpensive, and suitable for online and in-situ measurements compared to other methods. They can provide the detection for any compound that can undergo certain transformations within a potential window. It enables applications in multiple ion detection, mainly since these sensors are primarily non-specific. In this paper, we provide a survey of electrochemical sensors for the detection of water contaminants, i.e., pesticides, nitrate, nitrite, phosphorus, water hardeners, disinfectant, and other emergent contaminants (phenol, estrogen, gallic acid etc.). We focus on the influence of surface modification of the working electrodes by carbon nanomaterials, metallic nanostructures, imprinted polymers and evaluate the corresponding sensing performance. Especially for pesticides, which are challenging and need special care, we highlight biosensors, such as enzymatic sensors, immunobiosensor, aptasensors, and biomimetic sensors. We discuss the sensors' overall performance, especially concerning real-sample performance and the capability for actual field application.


Assuntos
Técnicas Biossensoriais , Nanocompostos , Técnicas Eletroquímicas , Água , Qualidade da Água
12.
Expert Opin Drug Metab Toxicol ; 17(7): 841-856, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33999717

RESUMO

Introduction: Alzheimer's disease and depression are health conditions affecting millions of people around the world. Both are strongly related to the level of the neurotransmitter acetylcholine. Since cholinergic deficit is characteristic of Alzheimer's disease, acetylcholinesterase inhibitors are applied as relevant drugs for the treatment of this disease, elevating the level of acetylcholine. On the other hand, a high level of acetylcholine is found to be associated with the symptoms of clinical depression.Areas covered: This article aims to discuss if acetylcholinesterase inhibitors used as anti-Alzheimer's drugs could be the cause of the symptoms of clinical depression often linked to this neurological disorder. Emphasis will be put on drugs currently in use and on newly investigated natural products, which can inhibit AChE activity.Expert opinion: Currently, it is not proven that the patient treated for Alzheimer's disease is prone to increased risk for depression due to the acetylcholinesterase inhibition, but there are strong indications. The level of acetylcholine is not the only factor in highly complicated diseases like AD and depression. Still, it needs to be considered isolated, keeping in mind the nature of presently available therapy, especially during a rational drug design process.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/efeitos adversos , Depressão/etiologia , Acetilcolina/metabolismo , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/psicologia , Animais , Produtos Biológicos/administração & dosagem , Produtos Biológicos/efeitos adversos , Produtos Biológicos/farmacologia , Inibidores da Colinesterase/administração & dosagem , Depressão/epidemiologia , Desenho de Fármacos , Humanos , Risco
13.
Eur J Pharm Sci ; 151: 105376, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32492460

RESUMO

Acetylcholinesterase (AChE) inhibitors are important in the treatment of neurodegenerative diseases. Two inhibitors, 12-tungstosilicic acid (WSiA) and 12-tungstophosphoric acid (WPA), which have polyoxometalate (POM) type structure, have been shown to inhibit AChE activity in nM concentration. Circular dichroism and tryptophan fluorescence spectroscopy demonstrated that the AChE inhibition was not accompanied by significant changes in the secondary structure of the enzyme. The molecular docking approach has revealed a new allosteric binding site, termed ß-allosteric site (ß-AS), which is considered responsible for the inhibition of AChE by POMs. To the best of our knowledge, this is the first study reporting a new allosteric site that is considered responsible for AChE inhibition by voluminous and negatively charged molecules such as POMs. The selected POMs were further subjected to genotoxicity testing using human peripheral blood cells as a model system. It was shown that WSiA and WPA induced a mild cytostatic but not genotoxic effects in human lymphocytes, which indicates their potential to be used as medicinal drugs. The identification of non-toxic compounds capable of binding to an allosteric site that so far has not been considered responsible for enzyme inhibition could be fundamental for the development of new drug design strategies and the discovery of more efficient AChE modulators.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Sítio Alostérico , Sítios de Ligação , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Humanos , Simulação de Acoplamento Molecular
14.
J Environ Manage ; 246: 63-70, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31174031

RESUMO

Intensive use of pesticides requires innovative approaches for their removal from the environment. Here we report the method for degradation of dimethoate in water using non-thermal plasma needle and analyze kinetics of dimethoate removal and possible degradation pathways. The effects of dimethoate initial concentration, plasma treatment time, Argon flow rate and the presence of radical promoters on the effectiveness of proposed method are evaluated. With argon flow rate of 0.5 slm (standard litres per minute) 1 × 10-4 M dimethoate can be removed within 30 min of treatment. Using UPLC analysis it was confirmed that one of the decomposition products is dimethoate oxo-analogue omethoate, which is in fact more toxic than dimethoate. However, the overall toxicity of contaminated water was reduced upon the treatment. The addition of H2O2 as a free radical promoter enhances dimethoate removal, while K2S2O8 results with selective conversion to omethoate. Using mass spectrometry in combination with the theoretical calculations, possible degradation pathways were proposed. The feasibility of the proposed method for dimethoate degradation in real water samples is confirmed. The proposed method is demonstrated as a highly effective approach for dimethoate removal without significant accumulation of undesirable toxic products and secondary waste.


Assuntos
Dimetoato , Praguicidas , Peróxido de Hidrogênio , Cinética , Água
15.
Food Chem ; 271: 469-478, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30236704

RESUMO

UV-C irradiation is widely used in the food industry. However, the health effects from dietary exposure to the irradiated pesticide residues retained in foodstuffs are underestimated. In this study, technical chlorpyrifos (TCPF) and its oil in water (EW) and emulsifiable concentrate (EC) formulations were irradiated by UV-C, and their photodegradation products were subjected to toxicity assessment, including determination of acetylcholinesterase (AChE) activity, genotoxicity and oxidative stress using human blood cells as a model system. Toxicity studies were performed using the chlorpyrifos concentrations in the range of those proposed as the maximum residue levels in plant commodities. TCPF, EW and EC photodegradation products induced DNA damage and oxidative stress, and their genotoxicity did not decrease as a function of irradiation time. Irradiated TCPF and EC are more potent AChE inhibitors than irradiated EW. Accordingly, the application of UV-C irradiation must be considered when processing the plants previously treated with chlorpyrifos formulations.


Assuntos
Clorpirifos/efeitos da radiação , Clorpirifos/toxicidade , Raios Ultravioleta , Acetilcolinesterase , Inibidores da Colinesterase , Humanos , Inseticidas/efeitos da radiação , Inseticidas/toxicidade , Estresse Oxidativo
16.
J Biol Inorg Chem ; 23(5): 689-704, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29644470

RESUMO

In recent years, the search for effective anticancer compounds based on transition metal complexes has been the focus of medical investigations. The synergy between the ruthenium(II) and N-alkylphenothiazine counter-ions (chlorpromazine hydrochloride, thioridazine hydrochloride and trifluoperazine dihydrochloride, respectively) through the formation of three different complexes (1-3) was investigated. We explored whether the selected counter-ions and complexes might affect redox homeostasis and genome integrity of normal human blood cells, and induce an inhibition of Na+/K+-ATPase and AChE at pharmacologically relevant doses. Our results have shown that counter-ions and complexes did not affect the activity of Na+/K+-ATPase, while AChE activity was inhibited in a dose-dependent manner. All investigated compounds disturbed the viability and redox homeostasis of lymphocytes. Complexes 1 and 2 displayed potent cytotoxic and prooxidant action while complex 3 behaved as a weaker genotoxic inducer. Still, the tested complexes appeared to be less genotoxic and more cytostatic than the corresponding counter-ions. The effects of selected complexes were also tested in PC12 and U2OS cancer cells with special attention being given to the ability of phenothiazines to affect dopamine D2 receptors. Using the confocal laser scanning microscopy, we observed that all the complexes reduced cell viability. Although all investigated complexes have been bound to the dopamine receptor D2-eGFP, only complex 3 reduced its surface density and increased its lateral mobility in investigated cell lines. Albeit the role of alternative targets for complex 3 cannot be ruled out, its effects should be further examined as potential treatment strategy against cancer cells that overexpress D2.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Fenotiazinas/química , Rutênio/química , Acetilcolinesterase/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Adulto , Animais , Antineoplásicos/química , Catalase/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Homeostase , Humanos , Malondialdeído/metabolismo , Microscopia Confocal , Testes de Mutagenicidade , Oxirredução , Ratos , Receptores de Dopamina D2/efeitos dos fármacos , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores , ATPase Trocadora de Sódio-Potássio/metabolismo , Espectrometria de Fluorescência , Espectrofotometria Ultravioleta
17.
Curr Med Chem ; 24(30): 3283-3309, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28685687

RESUMO

BACKGROUND: Acetylcholinesterase (AChE) is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs for different neurodegenerative diseases (such as Alzheimer's and Parkinson's) as well as toxins. At the same time, there are increasing evidence that in non-neuronal context, AChE is involved in the regulation of cell proliferation, differentiation, apoptosis and cell-cell interaction. An irregular expression of AChE has been found in different types of tumors, suggesting the involvement of AChE in the regulation of tumor development. Having all this in mind, there is a possibility that some AChE inhibitors could be used as anti-cancer agents. OBJECTIVE: This contribution will discuss a broad range of possible application of different AChE inhibitors as drugs, from well-known anti-Alzheimer's disease drugs to their use in cancer treatment in future. Emphasis will be put on various known AChE inhibitors classes, whose application as drugs could be controversy, as well as on newly investigated natural products, which can also modulate AChE activity. CONCLUSION: It is not clear a patient treated for neurodegenerative condition prone to increased risk for some types of cancer and vice versa. This is necessary to keep in mind during rational drug design process for all therapies, which are based on AChE as a target molecule.


Assuntos
Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/uso terapêutico , Neoplasias/tratamento farmacológico , Acetilcolinesterase/química , Doença de Alzheimer/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Humanos , Neoplasias/metabolismo , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo
18.
Curr Drug Metab ; 16(3): 168-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26279325

RESUMO

Myeloperoxidase (MPO) is an important member of the haem peroxidase - cyclooxygenase superfamily. This enzyme is physiologically expressed in circulating neutrophils, monocytes and some tissue macrophages including microglia. MPO plays an essential role in the antimicrobial and antiviral system of humans. The microbicidal activity of MPO exists due to its capability to oxidize halide and pseudohalide ions (CI(-), Br(-), I(-) and SCN(-)) by H2O2, thereby producing respective hypohalous acids (HOX). During the phagocytosis of pathogens, azurophilic granules release their content together with MPO into phagolysosomes. On the other hand, MPO can be discharged outside the phagocytes. Due to this, tissue damage during inflammation is greatly promoted by MPO-derived oxidants. Regarding its activity, MPO is a key factor in a great number of conditions within the group of cardiovascular diseases, inflammatory diseases, neurodegenerative diseases, kidney diseases and immune-mediated diseases. Therefore, MPO and its downstream inflammatory pathways might be attractive targets for both prognostic and therapeutic intervention in the prophylaxis of all mentioned illnesses. Nowadays, structure and reaction mechanism of MPO are known, which enable rational strategy in the development of specific MPO inhibitors that still preserve MPO activity during host defense from bacteria, but hinder pathophysiologically persistent activation of MPO. Various methods for MPO activity inhibition and unfavorable effects of MPO-derived oxidants remodeling will be discussed. Emphasis will be put on various known inhibitors, as well as on newly investigated natural products, which can also inhibit MPO activity.


Assuntos
Inibidores Enzimáticos/farmacologia , Peroxidase/antagonistas & inibidores , Biomarcadores , Inibidores Enzimáticos/química , Modelos Moleculares , Peroxidase/metabolismo , Conformação Proteica
19.
Eur J Pharm Sci ; 59: 20-30, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24768740

RESUMO

Chronic exposure to stress contributes to the etiology of mood disorders, and the liver as a target organ of antidepressant and antipsychotic drug metabolism is vulnerable to drug-induced toxicity. We investigated the effects of chronic administration of fluoxetine (15mg/kg/day) or clozapine (20mg/kg/day) on liver injury via the measurement of liver enzymes, oxidative stress and histopathology in rats exposed to chronic social isolation (21days), an animal model of depression, and controls. The activity of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST), the liver content of carbonyl groups, malonyldialdehyde (MDA), reduced glutathione (GSH), cytosolic glutathione S-transferase (GST) and nitric oxide (NO) metabolites were determined. We also characterized nuclear factor-κB (NF-κB), cyclooxygenase-2 (COX-2) and CuZn-superoxide dismutase (CuZnSOD) protein expression as well as histopathological changes. Increased serum ALT activity in chronically-isolated and control animals treated with both drugs was found while increased AST activity was observed only in fluoxetine-treated rats (chronically-isolated and controls). Increased carbonyl content, MDA, GST activity and decreased GSH levels in drug-treated controls/chronically-isolated animals suggest a link between drugs and hepatic oxidative stress. Increased NO levels associated with NF-κB activation and the concomitant increased COX-2 expression together with compromised CuZnSOD expression in clozapine-treated chronically-isolated rats likely reinforce oxidative stress, observed by increased lipid peroxidation and GSH depletion. In contrast, fluoxetine reduced NO levels in chronically-isolated rats. Isolation induced oxidative stress but histological changes were similar to those observed in vehicle-treated controls. Chronic administration of fluoxetine in both chronically-isolated and control animals resulted in more or less normal hepatic architecture, while clozapine in both groups resulted in liver injury. These data suggest that clozapine appears to have a higher potential to induce liver toxicity than fluoxetine.


Assuntos
Antidepressivos/efeitos adversos , Antipsicóticos/efeitos adversos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Clozapina/efeitos adversos , Fluoxetina/efeitos adversos , Fígado/efeitos dos fármacos , Alanina Transaminase/sangue , Animais , Antidepressivos/farmacologia , Antipsicóticos/farmacologia , Aspartato Aminotransferases/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Clozapina/farmacologia , Ciclo-Oxigenase 2/metabolismo , Fluoxetina/farmacologia , Glutationa/metabolismo , Glutationa Transferase/metabolismo , Fígado/metabolismo , Fígado/patologia , Masculino , Malondialdeído/metabolismo , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos Wistar , Superóxido Dismutase
20.
Curr Neuropharmacol ; 11(3): 315-35, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-24179466

RESUMO

Acetylcholinesterase is involved in the termination of impulse transmission by rapid hydrolysis of the neurotransmitter acetylcholine in numerous cholinergic pathways in the central and peripheral nervous systems. The enzyme inactivation, induced by various inhibitors, leads to acetylcholine accumulation, hyperstimulation of nicotinic and muscarinic receptors, and disrupted neurotransmission. Hence, acetylcholinesterase inhibitors, interacting with the enzyme as their primary target, are applied as relevant drugs and toxins. This review presents an overview of toxicology and pharmacology of reversible and irreversible acetylcholinesterase inactivating compounds. In the case of reversible inhibitors being commonly applied in neurodegenerative disorders treatment, special attention is paid to currently approved drugs (donepezil, rivastigmine and galantamine) in the pharmacotherapy of Alzheimer's disease, and toxic carbamates used as pesticides. Subsequently, mechanism of irreversible acetylcholinesterase inhibition induced by organophosphorus compounds (insecticides and nerve agents), and their specific and nonspecific toxic effects are described, as well as irreversible inhibitors having pharmacological implementation. In addition, the pharmacological treatment of intoxication caused by organophosphates is presented, with emphasis on oxime reactivators of the inhibited enzyme activity administering as causal drugs after the poisoning. Besides, organophosphorus and carbamate insecticides can be detoxified in mammals through enzymatic hydrolysis before they reach targets in the nervous system. Carboxylesterases most effectively decompose carbamates, whereas the most successful route of organophosphates detoxification is their degradation by corresponding phosphotriesterases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA