Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(29): 10580-5, 2014 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-24979777

RESUMO

Mitochondria maintain tight regulation of inner mitochondrial membrane (IMM) permeability to sustain ATP production. Stressful events cause cellular calcium (Ca(2+)) dysregulation followed by rapid loss of IMM potential known as permeability transition (PT), which produces osmotic shifts, metabolic dysfunction, and cell death. The molecular identity of the mitochondrial PT pore (mPTP) was previously unknown. We show that the purified reconstituted c-subunit ring of the FO of the F1FO ATP synthase forms a voltage-sensitive channel, the persistent opening of which leads to rapid and uncontrolled depolarization of the IMM in cells. Prolonged high matrix Ca(2+) enlarges the c-subunit ring and unhooks it from cyclophilin D/cyclosporine A binding sites in the ATP synthase F1, providing a mechanism for mPTP opening. In contrast, recombinant F1 beta-subunit applied exogenously to the purified c-subunit enhances the probability of pore closure. Depletion of the c-subunit attenuates Ca(2+)-induced IMM depolarization and inhibits Ca(2+) and reactive oxygen species-induced cell death whereas increasing the expression or single-channel conductance of the c-subunit sensitizes to death. We conclude that a highly regulated c-subunit leak channel is a candidate for the mPTP. Beyond cell death, these findings also imply that increasing the probability of c-subunit channel closure in a healthy cell will enhance IMM coupling and increase cellular metabolic efficiency.


Assuntos
Canais Iônicos/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Subunidades Proteicas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Animais , Cálcio/farmacologia , Morte Celular/efeitos dos fármacos , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Lipossomos/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Mutação/genética , Conformação Proteica , ATPases Translocadoras de Prótons/química , Ratos , Espécies Reativas de Oxigênio/metabolismo
2.
Nat Cell Biol ; 15(7): 773-85, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23792689

RESUMO

Following exocytosis, the rate of recovery of neurotransmitter release is determined by vesicle retrieval from the plasma membrane and by recruitment of vesicles from reserve pools within the synapse, which is dependent on mitochondrial ATP. The anti-apoptotic Bcl-2 family protein Bcl-xL also regulates neurotransmitter release and recovery in part by increasing ATP availability from mitochondria. We now find, that Bcl-xL directly regulates endocytic vesicle retrieval in hippocampal neurons through protein-protein interaction with components of the clathrin complex. Our evidence suggests that, during synaptic stimulation, Bcl-xL translocates to clathrin-coated pits in a calmodulin-dependent manner and forms a complex with the GTPase Drp1, Mff and clathrin. Depletion of Drp1 produces misformed endocytic vesicles. Mutagenesis studies suggest that formation of the Bcl-xL-Drp1 complex is necessary for the enhanced rate of vesicle endocytosis produced by Bcl-xL, thus providing a mechanism for presynaptic plasticity.


Assuntos
Dinaminas/fisiologia , Endocitose/fisiologia , Hipocampo/metabolismo , Neurônios/metabolismo , Membranas Sinápticas/fisiologia , Vesículas Sinápticas/fisiologia , Proteína bcl-X/fisiologia , Sequência de Aminoácidos , Animais , Calmodulina/metabolismo , Células Cultivadas , Clatrina/metabolismo , Hipocampo/citologia , Immunoblotting , Imunoprecipitação , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Neurônios/citologia , Transporte Proteico , Ratos , Homologia de Sequência de Aminoácidos , Transmissão Sináptica
3.
J Vis Exp ; (75): e4394, 2013 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-23685483

RESUMO

Mitochondria are involved in many important cellular functions including metabolism, survival(1), development and, calcium signaling(2). Two of the most important mitochondrial functions are related to the efficient production of ATP, the energy currency of the cell, by oxidative phosphorylation, and the mediation of signals for programmed cell death(3). The enzyme primarily responsible for the production of ATP is the F1FO-ATP synthase, also called ATP synthase(4-5). In recent years, the role of mitochondria in apoptotic and necrotic cell death has received considerable attention. In apoptotic cell death, BCL-2 family proteins such as Bax enter the mitochondrial outer membrane, oligomerize and permeabilize the outer membrane, releasing pro-apoptotic factors into the cytosol(6). In classic necrotic cell death, such as that produced by ischemia or excitotoxicity in neurons, a large, poorly regulated increase in matrix calcium contributes to the opening of an inner membrane pore, the mitochondrial permeability transition pore or mPTP. This depolarizes the inner membrane and causes osmotic shifts, contributing to outer membrane rupture, release of pro-apoptotic factors, and metabolic dysfunction. Many proteins including Bcl-xL(7) interact with F1FO ATP synthase, modulating its function. Bcl-xL interacts directly with the beta subunit of F1FO ATP synthase, and this interaction decreases a leak conductance within the F1FOATPasecomplex, increasing the net transport of H+ by F1FO during F1FO ATPase activity(8) and thereby increasing mitochondrial efficiency. To study the activity and modulation of the ATP synthase, we isolated from rodent brain submitochondrial vesicles (SMVs) containing F1FO ATPase. The SMVs retain the structural and functional integrity of the F1FO ATPase as shown in Alavian et al. Here, we describe a method that we have used successfully for the isolation of SMVs from rat brain and we delineate the patch clamp technique to analyze channel activity (ion leak conductance) of the SMVs.


Assuntos
Membranas Mitocondriais/enzimologia , Técnicas de Patch-Clamp/métodos , ATPases Translocadoras de Prótons/química , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia , Animais , Western Blotting , Encéfalo/citologia , Encéfalo/enzimologia , Potencial da Membrana Mitocondrial , Mitocôndrias/química , Mitocôndrias/enzimologia , ATPases Translocadoras de Prótons/metabolismo , Ratos
4.
Brain Res ; 1446: 1-11, 2012 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-22364637

RESUMO

Cellular stress or injury can result in mitochondrial dysfunction, which has been linked to many chronic neurological disorders including amyotrophic lateral sclerosis (ALS) and Parkinson's disease (PD). Stressed and dysfunctional mitochondria exhibit an increase in large conductance mitochondrial membrane currents and a decrease in bioenergetic efficiency. Inefficient energy production puts cells, and particularly neurons, at risk of death when energy demands exceed cellular energy production. Here we show that the candidate ALS drug dexpramipexole (DEX; KNS-760704; ((6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine) and cyclosporine A (CSA) inhibited increases in ion conductance in whole rat brain-derived mitochondria induced by calcium or treatment with a proteasome inhibitor, although only CSA inhibited calcium-induced permeability transition in liver-derived mitochondria. In several cell lines, including cortical neurons in culture, DEX significantly decreased oxygen consumption while maintaining or increasing production of adenosine triphosphate (ATP). DEX also normalized the metabolic profile of injured cells and was protective against the cytotoxic effects of proteasome inhibition. These data indicate that DEX increases the efficiency of oxidative phosphorylation, possibly by inhibition of a CSA-sensitive mitochondrial conductance.


Assuntos
Antagonistas Adrenérgicos beta/farmacologia , Metabolismo Energético/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Neurônios/ultraestrutura , Propranolol/farmacologia , Trifosfato de Adenosina/metabolismo , Análise de Variância , Animais , Fenômenos Biofísicos/efeitos dos fármacos , Encéfalo/citologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciclosporina/farmacologia , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Camundongos , Membranas Mitocondriais/efeitos dos fármacos , Neuroblastoma/patologia , Neuroblastoma/ultraestrutura , Oligopeptídeos/farmacologia , Consumo de Oxigênio/efeitos dos fármacos , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley
5.
Nat Cell Biol ; 13(10): 1224-33, 2011 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-21926988

RESUMO

Anti-apoptotic Bcl2 family proteins such as Bcl-x(L) protect cells from death by sequestering apoptotic molecules, but also contribute to normal neuronal function. We find in hippocampal neurons that Bcl-x(L) enhances the efficiency of energy metabolism. Our evidence indicates that Bcl-x(L)interacts directly with the ß-subunit of the F(1)F(O) ATP synthase, decreasing an ion leak within the F(1)F(O) ATPase complex and thereby increasing net transport of H(+) by F(1)F(O) during F(1)F(O) ATPase activity. By patch clamping submitochondrial vesicles enriched in F(1)F(O) ATP synthase complexes, we find that, in the presence of ATP, pharmacological or genetic inhibition of Bcl-x(L) activity increases the membrane leak conductance. In addition, recombinant Bcl-x(L) protein directly increases the level of ATPase activity of purified synthase complexes, and inhibition of endogenous Bcl-x(L) decreases the level of F(1)F(O) enzymatic activity. Our findings indicate that increased mitochondrial efficiency contributes to the enhanced synaptic efficacy found in Bcl-x(L)-expressing neurons.


Assuntos
Metabolismo Energético , Hipocampo/enzimologia , Mitocôndrias/enzimologia , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Neurônios/enzimologia , Sinapses/enzimologia , Proteína bcl-X/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Compostos de Bifenilo/farmacologia , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Células Cultivadas , Metabolismo Energético/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Hipocampo/citologia , Hipocampo/efeitos dos fármacos , Hidrólise , Potencial da Membrana Mitocondrial , Mitocôndrias/efeitos dos fármacos , Membranas Mitocondriais/enzimologia , ATPases Mitocondriais Próton-Translocadoras/antagonistas & inibidores , Neurônios/efeitos dos fármacos , Nitrofenóis/farmacologia , Oligomicinas/farmacologia , Consumo de Oxigênio , Técnicas de Patch-Clamp , Piperazinas/farmacologia , Ionóforos de Próton/farmacologia , Interferência de RNA , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Sulfonamidas/farmacologia , Sinapses/efeitos dos fármacos , Fatores de Tempo , Transfecção , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Proteína X Associada a bcl-2/metabolismo , Proteína bcl-X/antagonistas & inibidores , Proteína bcl-X/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA