RESUMO
The broad application of precision cancer immunotherapies is limited by the number of validated neoepitopes that are common among patients or tumor types. To expand the known repertoire of shared neoantigen-human leukocyte antigen (HLA) complexes, we developed a high-throughput platform that coupled an in vitro peptide-HLA binding assay with engineered cellular models expressing individual HLA alleles in combination with a concatenated transgene harboring 47 common cancer neoantigens. From more than 24,000 possible neoepitope-HLA combinations, biochemical and computational assessment yielded 844 unique candidates, of which 86 were verified after immunoprecipitation mass spectrometry analyses of engineered, monoallelic cell lines. To evaluate the potential for immunogenicity, we identified T cell receptors that recognized select neoepitope-HLA pairs and elicited a response after introduction into human T cells. These cellular systems and our data on therapeutically relevant neoepitopes in their HLA contexts will aid researchers studying antigen processing as well as neoepitope targeting therapies.
RESUMO
Lung cancer, the leading cause of cancer mortality, exhibits heterogeneity that enables adaptability, limits therapeutic success, and remains incompletely understood. Single-cell RNA sequencing (scRNA-seq) of metastatic lung cancer was performed using 49 clinical biopsies obtained from 30 patients before and during targeted therapy. Over 20,000 cancer and tumor microenvironment (TME) single-cell profiles exposed a rich and dynamic tumor ecosystem. scRNA-seq of cancer cells illuminated targetable oncogenes beyond those detected clinically. Cancer cells surviving therapy as residual disease (RD) expressed an alveolar-regenerative cell signature suggesting a therapy-induced primitive cell-state transition, whereas those present at on-therapy progressive disease (PD) upregulated kynurenine, plasminogen, and gap-junction pathways. Active T-lymphocytes and decreased macrophages were present at RD and immunosuppressive cell states characterized PD. Biological features revealed by scRNA-seq were biomarkers of clinical outcomes in independent cohorts. This study highlights how therapy-induced adaptation of the multi-cellular ecosystem of metastatic cancer shapes clinical outcomes.
Assuntos
Neoplasias Pulmonares/genética , Biomarcadores Tumorais/genética , Linhagem Celular , Ecossistema , Humanos , Neoplasias Pulmonares/patologia , Macrófagos/patologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Linfócitos T/patologia , Microambiente Tumoral/genéticaRESUMO
The conducting airway forms a protective mucosal barrier and is the primary target of airway disorders. The molecular events required for the formation and function of the airway mucosal barrier, as well as the mechanisms by which barrier dysfunction leads to early onset airway diseases, remain unclear. In this study, we systematically characterized the developmental landscape of the mouse airway using single-cell RNA sequencing and identified remarkably conserved cellular programs operating during human fetal development. We demonstrated that in mouse, genetic inactivation of chloride channel Ano1/Tmem16a compromises airway barrier function, results in early signs of inflammation, and alters the airway cellular landscape by depleting epithelial progenitors. Mouse Ano1-/-mutants exhibited mucus obstruction and abnormal mucociliary clearance that resemble the airway defects associated with cystic fibrosis. The data reveal critical and non-redundant roles for Ano1 in organogenesis, and show that chloride channels are essential for mammalian airway formation and function.
Assuntos
Anoctamina-1/metabolismo , Proteínas de Neoplasias/metabolismo , Mucosa Respiratória/embriologia , Animais , Diferenciação Celular/fisiologia , Humanos , Camundongos , Organogênese/fisiologia , Mucosa Respiratória/metabolismo , Traqueia/embriologia , Traqueia/metabolismoRESUMO
Transcription factors (TFs) are primary regulators of gene expression in cells, where they bind specific genomic target sites to control transcription. Quantitative measurements of TF-DNA binding energies can improve the accuracy of predictions of TF occupancy and downstream gene expression in vivo and shed light on how transcriptional networks are rewired throughout evolution. Here, we present a sequencing-based TF binding assay and analysis pipeline (BET-seq, for Binding Energy Topography by sequencing) capable of providing quantitative estimates of binding energies for more than one million DNA sequences in parallel at high energetic resolution. Using this platform, we measured the binding energies associated with all possible combinations of 10 nucleotides flanking the known consensus DNA target interacting with two model yeast TFs, Pho4 and Cbf1. A large fraction of these flanking mutations change overall binding energies by an amount equal to or greater than consensus site mutations, suggesting that current definitions of TF binding sites may be too restrictive. By systematically comparing estimates of binding energies output by deep neural networks (NNs) and biophysical models trained on these data, we establish that dinucleotide (DN) specificities are sufficient to explain essentially all variance in observed binding behavior, with Cbf1 binding exhibiting significantly more nonadditivity than Pho4. NN-derived binding energies agree with orthogonal biochemical measurements and reveal that dynamically occupied sites in vivo are both energetically and mutationally distant from the highest affinity sites.
Assuntos
DNA/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Fatores de Transcrição/metabolismo , Sequência de Bases , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Sítios de Ligação , Simulação por Computador , Proteínas de Ligação a DNA/metabolismo , Elementos E-Box , Biblioteca Gênica , Técnicas Analíticas Microfluídicas , Método de Monte Carlo , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Sequência de DNA , Termodinâmica , Transcrição GênicaRESUMO
G-quadruplex DNAs form four-stranded helical structures and are proposed to play key roles in different cellular processes. Targeting G-quadruplex DNAs for cancer treatment is a very promising prospect. Here, we show that CX-5461 is a G-quadruplex stabilizer, with specific toxicity against BRCA deficiencies in cancer cells and polyclonal patient-derived xenograft models, including tumours resistant to PARP inhibition. Exposure to CX-5461, and its related drug CX-3543, blocks replication forks and induces ssDNA gaps or breaks. The BRCA and NHEJ pathways are required for the repair of CX-5461 and CX-3543-induced DNA damage and failure to do so leads to lethality. These data strengthen the concept of G4 targeting as a therapeutic approach, specifically for targeting HR and NHEJ deficient cancers and other tumours deficient for DNA damage repair. CX-5461 is now in advanced phase I clinical trial for patients with BRCA1/2 deficient tumours (Canadian trial, NCT02719977, opened May 2016).
Assuntos
Proteína BRCA1/deficiência , Proteína BRCA2/deficiência , Benzotiazóis/farmacologia , Benzotiazóis/uso terapêutico , Quadruplex G , Naftiridinas/farmacologia , Naftiridinas/uso terapêutico , Neoplasias/tratamento farmacológico , Animais , Sequência de Bases , Benzoxazinas/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Linhagem Celular Tumoral , Instabilidade Cromossômica/genética , Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , DNA Ribossômico/genética , Feminino , Quadruplex G/efeitos dos fármacos , Genoma Humano , Genótipo , Recombinação Homóloga/efeitos dos fármacos , Humanos , Camundongos , Quinolonas/farmacologia , Saccharomyces cerevisiae/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Development of tool molecules that inhibit Jumonji demethylases allows for the investigation of cancer-associated transcription. While scaffolds such as 2,4-pyridinedicarboxylic acid (2,4-PDCA) are potent inhibitors, they exhibit limited selectivity. To discover new inhibitors for the KDM4 demethylases, enzymes overexpressed in several cancers, we docked a library of 600,000 fragments into the high-resolution structure of KDM4A. Among the most interesting chemotypes were the 5-aminosalicylates, which docked in two distinct but overlapping orientations. Docking poses informed the design of covalently linked fragment compounds, which were further derivatized. This combined approach improved affinity by â¼ 3 log-orders to yield compound 35 (Ki = 43 nM). Several hybrid inhibitors were selective for KDM4C over the related enzymes FIH, KDM2A, and KDM6B while lacking selectivity against the KDM3 and KDM5 subfamilies. Cocrystal structures corroborated the docking predictions. This study extends the use of structure-based docking from fragment discovery to fragment linking optimization, yielding novel KDM4 inhibitors.
Assuntos
Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Mesalamina/química , Mesalamina/farmacologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/enzimologiaRESUMO
Arginine methylation has emerged as a widespread post-translational modification with influence over myriad cellular processes. However, the molecular mechanisms underlying such methylarginine-dependent phenomena remain unclear. To aid in this research, a facile method was developed to install methylarginine analogues on recombinant protein for use in biochemical, biophysical, and structural studies. Through chemical conjugation of novel α,ß-unsaturated amidine precursors with proteins, methylarginine mimics can be displayed with control of methylation site, extent, and regiospecificity. Analogue installation into histones using this strategy produced modified proteins that were recognized by antibodies specific to endogenous methylarginine, and these histones retained the capacity to form mononucleosomes. Moreover, a native methylarginine-specific binding domain was shown to interact with methylarginine analogue-modified substrates. This chemical conjugation method for installing methylarginine analogues provides an efficient route to produce homogeneous modified proteins for subsequent investigations of methylarginine-dependent processes.
Assuntos
Arginina/química , Histonas/química , Metilação , Eletroforese em Gel de Poliacrilamida Nativa , Ligação Proteica , Proteínas Recombinantes/químicaRESUMO
Protein and nucleic acid methylating enzymes are implicated in myriad cellular processes. These enzymes utilize diverse chemical mechanisms ranging from nucleophilic substitution-displacement to a novel radical-based reaction found in bacterial iron-sulfur cluster proteins. Within the cell, methylation activity is governed by interactions with endogenous molecular machinery. Of particular interest are the observations that methylating enzyme activity can be allosterically controlled by regulatory binding partners. Recent advances and emerging trends in the study of methylating enzyme mechanisms and regulation highlight the importance of protein and nucleic acid methylation in cellular physiology and disease.
Assuntos
Metiltransferases/metabolismo , Ácidos Nucleicos/metabolismo , Proteínas/metabolismo , Regulação Alostérica , Animais , Biocatálise , Metilases de Modificação do DNA/química , Metilases de Modificação do DNA/metabolismo , Histona-Lisina N-Metiltransferase/química , Histona-Lisina N-Metiltransferase/metabolismo , Humanos , Metilação , Metiltransferases/química , Modelos Moleculares , Proteína-Arginina N-Metiltransferases/química , Proteína-Arginina N-Metiltransferases/metabolismoRESUMO
Deregulation of the phosphoinositide-3-OH kinase (PI(3)K) pathway has been implicated in numerous pathologies including cancer, diabetes, thrombosis, rheumatoid arthritis and asthma. Recently, small-molecule and ATP-competitive PI(3)K inhibitors with a wide range of selectivities have entered clinical development. In order to understand the mechanisms underlying the isoform selectivity of these inhibitors, we developed a new expression strategy that enabled us to determine to our knowledge the first crystal structure of the catalytic subunit of the class IA PI(3)K p110 delta. Structures of this enzyme in complex with a broad panel of isoform- and pan-selective class I PI(3)K inhibitors reveal that selectivity toward p110 delta can be achieved by exploiting its conformational flexibility and the sequence diversity of active site residues that do not contact ATP. We have used these observations to rationalize and synthesize highly selective inhibitors for p110 delta with greatly improved potencies.
Assuntos
Domínio Catalítico , Fosfatidilinositol 3-Quinases/química , Inibidores de Proteínas Quinases/química , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Animais , Linhagem Celular , Simulação por Computador , Cristalografia por Raios X , Humanos , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Fosfatidilinositol 3-Quinases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Spodoptera , Relação Estrutura-Atividade , Especificidade por SubstratoRESUMO
Rate constants for the rearrangement of 1-bicyclo[3.1.0]hexanylmethyl radical (2) to 3-methylenecyclohexenyl radical (3) and 2-methylenecyclopentyl-1-methyl radical (1) were measured using the PTOC-thiol competition method. The ring-expansion pathway is described by the rate equation, log(k/s-1) = (12.5 +/- 0.1) - (4.9 +/- 0.1)/theta; the non-expansion pathway is described by log(k/s-1) = (11.9 +/- 0.6) - (6.9 +/- 0.8)/theta. Employing the slower trapping agent, tri-n-butylstannane, favors methylenecyclohexane over 2-methyl-methylenecyclopentane by more than 120:1 at ambient or lower temperatures.