Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Bone Miner Res ; 39(8): 1188-1199, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38995944

RESUMO

Calorie restriction (CR) can lead to weight loss and decreased substrate availability for bone cells. Ultimately, this can lead to impaired peak bone acquisition in children and adolescence and bone loss in adults. But the mechanisms that drive diet-induced bone loss in humans are not well characterized. To explore those in greater detail, we examined the impact of 30% CR for 4 and 8 wk in both male and female 8-wk-old C57BL/6 J mice. Body composition, areal bone mineral density (aBMD), skeletal microarchitecture by micro-CT, histomorphometric parameters, and in vitro trajectories of osteoblast and adipocyte differentiation were examined. After 8 wk, CR mice lost weight and exhibited lower femoral and whole-body aBMD vs ad libitum (AL) mice. By micro-CT, CR mice had lower cortical bone area fraction vs AL mice, but males had preserved trabecular bone parameters and females showed increased bone volume fraction compared to AL mice. Histomorphometric analysis revealed that CR mice had a profound suppression in trabecular as well as endocortical and periosteal bone formation in addition to reduced bone resorption compared to AL mice. Bone marrow adipose tissue was significantly increased in CR mice. In vitro, the pace of adipogenesis in bone marrow stem cells was greatly accelerated with higher markers of adipocyte differentiation and more oil red O staining, whereas osteogenic differentiation was reduced. qRT-PCR and western blotting suggested that the expression of Wnt16 and the canonical ß-catenin pathway was compromised during CR. In sum, CR causes impaired peak cortical bone mass due to a profound suppression in bone remodeling. The increase in marrow adipocytes in vitro and in vivo is related to both progenitor recruitment and adipogenesis in the face of nutrient insufficiency. Long-term CR may lead to lower bone mass principally in the cortical envelope, possibly due to impaired Wnt signaling.


Calorie restriction led to impaired bone mass and increased accumulation of bone marrow adipose tissue. During the development of bone-fat imbalance due to calorie restriction, bone remodeling was notably inhibited. Calorie restriction may shift the differentiation of bone marrow stem cells toward adipocytes instead of osteoblasts. This process involves a disruption in the canonical Wnt signaling pathway.


Assuntos
Densidade Óssea , Remodelação Óssea , Restrição Calórica , Osso Esponjoso , Osso Cortical , Animais , Osso Cortical/patologia , Osso Cortical/metabolismo , Osso Cortical/diagnóstico por imagem , Feminino , Osso Esponjoso/patologia , Osso Esponjoso/metabolismo , Osso Esponjoso/diagnóstico por imagem , Masculino , Camundongos Endogâmicos C57BL , Camundongos , Osteoblastos/metabolismo , Osteoblastos/patologia , Adipogenia , Adipócitos/metabolismo , Adipócitos/patologia , Osteogênese , Tamanho do Órgão , Diferenciação Celular , Via de Sinalização Wnt , Microtomografia por Raio-X
2.
Eur J Obstet Gynecol Reprod Biol ; 294: 123-127, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38237310

RESUMO

OBJECTIVE: This study evaluated embryological and clinical outcomes in couples with severe male factor infertility versus those with normozoospermia undergoing ICSI and in vitro fertilisation. METHODS: This multicentre, retrospective cohort study included all couples who had undergone autologous ICSI cycles at My Duc Hospital and My Duc Phu Nhuan Hospital in Vietnam between January 2018 and January 2021 (female age < 35 years and males with severe male factor or normozoospermia based on the World Health Organization 2010 criteria). The primary outcome was the cumulative live birth rate after the first ICSI cycle. RESULTS: A total of 1296 couples were included, including 648 with severe male factor infertility and 648 with normozoospermia. The number of two pronuclei zygotes, embryos, and frozen embryos was significantly lower in couples with severe male factor infertility compared with normozoospermia (p < 0.05). In contrast, there were no significant differences between the two groups with respect to cumulative pregnancy outcomes, including the live birth rate, and secondary outcomes including clinical pregnancy rate, ongoing pregnancy rate, and miscarriage rate. CONCLUSION: Severe male factor infertility appeared to have an impact on the fertilisation and early developmental potential of embryos, but sperm quality did not affect cumulative clinical fertility outcomes.


Assuntos
Infertilidade Masculina , Infertilidade , Gravidez , Masculino , Humanos , Feminino , Adulto , Injeções de Esperma Intracitoplásmicas/métodos , Estudos Retrospectivos , Sêmen , Infertilidade Masculina/terapia , Fertilização in vitro/métodos , Taxa de Gravidez , Coeficiente de Natalidade , Nascido Vivo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA