Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Inflammation ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38700792

RESUMO

In vitro induced T regulatory cells (iTregs) are promising for addressing inflammation-driven diseases. However, current protocols for the generation and expansion of iTregs fail to induce extensive demethylation of the Treg-specific demethylated region (TSDR) within the FOXP3 gene, recognized as the master regulator for regulatory T cells (Tregs). This deficiency results in the rapid loss of Foxp3 expression and an unstable regulatory phenotype. Nevertheless, inhibition of STAT6 signaling effectively stabilizes Foxp3 expression in iTregs. Thus, this study aimed to develop a protocol combining epigenetic editing with STAT6 deficiency to improve iTregs' ability to maintain stable suppressive function and a functional phenotype. Our findings demonstrate that the combination of STAT6 deficiency (STAT6-/-) with targeted demethylation of the TSDR using a CRISPR-TET1 tool leads to extensive demethylation of FOXP3-TSDR. Demethylation in STAT6-/- iTregs was associated with enhanced expression of Foxp3 and suppressive markers such as CTLA-4, PD-1, IL-10, and TGF-ß. Furthermore, the edited STAT6-/- iTregs exhibited an increased capacity to suppress CD8+ and CD4+ lymphocytes and could more efficiently impair Th1-signature gene expression compared to conventional iTregs. In conclusion, the deactivation of STAT6 and TSDR-targeted demethylation via CRISPR-TET1 is sufficient to induce iTregs with heightened stability and increased suppressive capacity, offering potential applications against inflammatory and autoimmune diseases.

2.
Mol Diagn Ther ; 28(1): 69-86, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37907826

RESUMO

Immunotherapy for colorectal cancer (CRC) is limited to patients with advanced disease who have already undergone first-line chemotherapy and whose tumors exhibit microsatellite instability. Novel technical strategies are required to enhance therapeutic options and achieve a more robust immunological response. Therefore, exploring gene analysis and manipulation at the molecular level can further accelerate the development of advanced technologies to address these challenges. The emergence of advanced genome editing technology, particularly of clustered, regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein (Cas) 9, holds promise in expanding the boundaries of cancer immunotherapy. In this manuscript, we provide a comprehensive review of the applications and perspectives of CRISPR technology in improving the design, generation, and efficiency of current immunotherapies, focusing on solid tumors such as colorectal cancer, where these approaches have not been as successful as in hematological conditions.


Assuntos
Sistemas CRISPR-Cas , Neoplasias Colorretais , Humanos , Sistemas CRISPR-Cas/genética , Edição de Genes , Imunoterapia , Terapia Genética , Neoplasias Colorretais/genética , Neoplasias Colorretais/terapia
3.
J Pediatr Endocrinol Metab ; 36(7): 615-627, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37235772

RESUMO

Fetal programming occurs during the gestational age when exposure to environmental stimuli can cause long-term changes in the fetus, predisposing it to develop chronic non-communicable diseases (CNCD) in adulthood. Herein, we summarized the role of low-calorie or high-fat diets during pregnancy as fetal programming agents that induce intrauterine growth restriction (IUGR), amplified de novo lipogenesis, and increased amino acid transport to the placenta, which favor the CNCD onset in the offspring. We also outlined how maternal obesity and gestational diabetes act as fetal programming stimuli by reducing iron absorption and oxygen transport to the fetus, stimulating inflammatory pathways that boost neurological disorders and CNCD in the progeny. Moreover, we reviewed the mechanisms through which fetal hypoxia elevates the offspring's risk of developing hypertension and chronic kidney disease in adult life by unbalancing the renin-angiotensin system and promoting kidney cell apoptosis. Finally, we examined how inadequate vitamin B12 and folic acid consumption during pregnancy programs the fetus to greater adiposity, insulin resistance, and glucose intolerance in adulthood. A better understanding of the fetal programming mechanisms may help us reduce the onset of insulin resistance, glucose intolerance, dyslipidemia, obesity, hypertension, diabetes mellitus, and other CNCD in the offspring during adulthood.


Assuntos
Intolerância à Glucose , Hipertensão , Resistência à Insulina , Efeitos Tardios da Exposição Pré-Natal , Adulto , Gravidez , Humanos , Feminino , Intolerância à Glucose/complicações , Desenvolvimento Fetal , Obesidade/etiologia , Hipertensão/complicações , Retardo do Crescimento Fetal/etiologia
4.
Biomedicines ; 11(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36979631

RESUMO

Robust data in animals show that sucralose intake during gestation can predispose the offspring to weight gain, metabolic disturbances, and low-grade systemic inflammation; however, concluding information remains elusive in humans. In this cross-sectional, prospective study, we examined the birth weight, glucose and insulin cord blood levels, monocyte subsets, and inflammatory cytokine profile in 292 neonates at term from mothers with light sucralose ingestion (LSI) of less than 60 mg sucralose/week or heavy sucralose intake (HSI) of more than 36 mg sucralose/day during pregnancy. Mothers in the LSI (n = 205) or HSI (n = 87) groups showed no differences in age, pregestational body mass index, blood pressure, and glucose tolerance. Although there were no differences in glucose, infants from HSI mothers displayed significant increases in birth weight and insulin compared to newborns from LSI mothers. Newborns from HSI mothers showed a substantial increase in the percentage of inflammatory nonclassical monocytes compared to neonates from LSI mothers. Umbilical cord tissue of infants from HSI mothers exhibited higher IL-1 beta and TNF-alpha with lower IL-10 expression than that found in newborns from LSI mothers. Present results demonstrate that heavy sucralose ingestion during pregnancy affects neonates' anthropometric, metabolic, and inflammatory features.

5.
Eur J Immunol ; 53(5): e2250128, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36785881

RESUMO

Signal transducer and activator of transcription 6 (STAT6) promotes tumorigenesis by decreasing the Forkhead box P3+ (Foxp3+) cell frequency allowing for the infiltration of inflammatory cells during the early stages of colitis-associated cancer (CAC). In this study, we dissected the role of STAT6 in the generation of inducible in vitro regulatory T cells (iTregs) and peripheral in vivo Tregs (pTregs) under inflammatory conditions. In in vitro assays, when STAT6 was lacking, iTregs preserved a stable phenotype and expressed high levels of Foxp3 and CD25 during long expansion periods, even in the presence of IL-6. This effect was associated with increased in vitro suppressive ability, over-expression of programmed death-1 (PD-1), CTLA-4, and Foxp3, and decreased IFN-γ expression. Furthermore, iTregs developed during STAT6 deficiency showed a higher demethylation status for the FOXP3 Treg-specific demethylated region (TSDR), coupled with lower DNA methyltransferase 1 (DNMT1) mRNA expression, suggesting that STAT6 may lead to Foxp3 silencing. Using a mouse model of CAC, the STAT6-/- pTregs expressed a more activated phenotype at the intestine, had higher suppressive capacity, and expressed more significant levels of PD-1 and latency-associated peptide of TGF-ß (LAP) associated with their ability to attenuate tumor development. These data suggest that STAT6 signaling impairs the induction, stability, and suppressive capacity of Tregs developed in vitro or in vivo during gut inflammation.


Assuntos
Receptor de Morte Celular Programada 1 , Linfócitos T Reguladores , Linfócitos T Reguladores/metabolismo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fatores de Transcrição Forkhead/metabolismo
6.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768437

RESUMO

In 2013, recognizing that Colorectal Cancer (CRC) is the second leading cause of death by cancer worldwide and that it was a neglected disease increasing rapidly in Mexico, the community of researchers at the Biomedicine Research Unit of the Facultad de Estudios Superiores Iztacala from the Universidad Nacional Autónoma de México (UNAM) established an intramural consortium that involves a multidisciplinary group of researchers, technicians, and postgraduate students to contribute to the understanding of this pathology in Mexico. This article is about the work developed by the Mexican Colorectal Cancer Research Consortium (MEX-CCRC): how the Consortium was created, its members, and its short- and long-term goals. Moreover, it is a narrative of the accomplishments of this project. Finally, we reflect on possible strategies against CRC in Mexico and contrast all the data presented with another international strategy to prevent and treat CRC. We believe that the Consortium's characteristics must be maintained to initiate a national strategy, and the reported data could be useful to establish future collaborations with other countries in Latin America and the world.


Assuntos
Neoplasias Colorretais , Estudantes , Humanos , México , Estudos Interdisciplinares , Terapias em Estudo , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/terapia
7.
Biomolecules ; 11(8)2021 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-34439835

RESUMO

Increasing evidence has demonstrated that oxidized low-density lipoproteins (oxLDL) and lipopolysaccharide (LPS) enhance accumulation of interleukin (IL)-1 beta-producing macrophages in atherosclerotic lesions. However, the potential synergistic effect of native LDL (nLDL) and LPS on the inflammatory ability and migration pattern of monocyte subpopulations remains elusive and is examined here. In vitro, whole blood cells from healthy donors (n = 20) were incubated with 100 µg/mL nLDL, 10 ng/mL LPS, or nLDL + LPS for 9 h. Flow cytometry assays revealed that nLDL significantly decreases the classical monocyte (CM) percentage and increases the non-classical monocyte (NCM) subset. While nLDL + LPS significantly increased the number of NCMs expressing IL-1 beta and the C-C chemokine receptor type 2 (CCR2), the amount of NCMs expressing the CX3C chemokine receptor 1 (CX3CR1) decreased. In vivo, patients (n = 85) with serum LDL-cholesterol (LDL-C) >100 mg/dL showed an increase in NCM, IL-1 beta, LPS-binding protein (LBP), and Castelli's atherogenic risk index as compared to controls (n = 65) with optimal LDL-C concentrations (≤100 mg/dL). This work demonstrates for the first time that nLDL acts in synergy with LPS to alter the balance of human monocyte subsets and their ability to produce inflammatory cytokines and chemokine receptors with prominent roles in atherogenesis.


Assuntos
Receptor 1 de Quimiocina CX3C/genética , LDL-Colesterol/farmacologia , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , Monócitos/efeitos dos fármacos , Receptores CCR2/genética , Proteínas de Fase Aguda/genética , Proteínas de Fase Aguda/imunologia , Adolescente , Adulto , Proteína C-Reativa/genética , Proteína C-Reativa/imunologia , Receptor 1 de Quimiocina CX3C/imunologia , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/imunologia , HDL-Colesterol/sangue , Sinergismo Farmacológico , Feminino , Citometria de Fluxo , Expressão Gênica , Voluntários Saudáveis , Humanos , Interleucina-1beta/imunologia , Masculino , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/imunologia , Pessoa de Meia-Idade , Monócitos/citologia , Monócitos/imunologia , Cultura Primária de Células , Receptores CCR2/imunologia , Triglicerídeos/sangue
8.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299314

RESUMO

Signal transducer and activator of transcription 1 (STAT1) acts as a tumor suppressor molecule in colitis-associated colorectal cancer (CAC), particularly during the very early stages, modulating immune responses and controlling mechanisms such as apoptosis and cell proliferation. Previously, using an experimental model of CAC, we reported increased intestinal cell proliferation and faster tumor development, which were consistent with more signs of disease and damage, and reduced survival in STAT1-/- mice, compared with WT counterparts. However, the mechanisms through which STAT1 might prevent colorectal cancer progression preceded by chronic inflammation are still unclear. Here, we demonstrate that increased tumorigenicity related to STAT1 deficiency could be suppressed by IL-17 neutralization. The blockade of IL-17 in STAT1-/- mice reduced the accumulation of CD11b+Ly6ClowLy6G+ cells resembling granulocytic myeloid-derived suppressor cells (MDSCs) in both spleen and circulation. Additionally, IL-17 blockade reduced the recruitment of neutrophils into intestinal tissue, the expression and production of inflammatory cytokines, and the expression of intestinal STAT3. In addition, the anti-IL-17 treatment also reduced the expression of Arginase-1 and inducible nitric oxide synthase (iNOS) in the colon, both associated with the main suppressive activity of MDSCs. Thus, a lack of STAT1 signaling induces a significant change in the colonic microenvironment that supports inflammation and tumor formation. Anti-IL-17 treatment throughout the initial stages of CAC related to STAT1 deficiency abrogates the tumor formation possibly caused by myeloid cells.


Assuntos
Neoplasias Associadas a Colite/etiologia , Granulócitos/patologia , Interleucina-17/fisiologia , Fator de Transcrição STAT1/fisiologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Neoplasias Associadas a Colite/patologia , Neoplasias Associadas a Colite/fisiopatologia , Progressão da Doença , Feminino , Granulócitos/imunologia , Interleucina-17/antagonistas & inibidores , Interleucina-17/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células Supressoras Mieloides/imunologia , Células Supressoras Mieloides/patologia , Neoplasias Experimentais/etiologia , Neoplasias Experimentais/patologia , Neoplasias Experimentais/fisiopatologia , Fator de Transcrição STAT1/deficiência , Fator de Transcrição STAT1/genética , Microambiente Tumoral/imunologia
9.
Int J Mol Sci ; 22(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919941

RESUMO

Inflammation is the main driver of the tumor initiation and progression in colitis-associated colorectal cancer (CAC). Recent findings have indicated that the signal transducer and activator of transcription 6 (STAT6) plays a fundamental role in the early stages of CAC, and STAT6 knockout (STAT6-/-) mice are highly resistant to CAC development. Regulatory T (Treg) cells play a major role in coordinating immunomodulation in cancer; however, the role of STAT6 in the induction and function of Treg cells is poorly understood. To clarify the contribution of STAT6 to CAC, STAT6-/- and wild type (WT) mice were subjected to an AOM/DSS regimen, and the frequency of peripheral and local Treg cells was determined during the progression of CAC. When STAT6 was lacking, a remarkable reduction in tumor growth was observed, which was associated with decreased inflammation and an increased number of CD4+CD25+Foxp3+ cells in the colon, circulation, and spleen, including an over-expression of TGF-beta, IL-10, and Foxp3, compared to WT mice, during the early stages of CAC development. Conversely, WT mice showed an inverse frequency of Treg cells compared with STAT6-/- mice, which was followed by intestinal tumor formation. Increased mucosal inflammation, histological damage, and tumorigenesis were restored to levels observed in WT mice when an early inhibition/depletion of Treg cells was performed in STAT6-/- mice. Thus, with STAT6 deficiency, an increased number of Treg cells induce resistance against tumorigenesis, arresting tumor-promoting inflammation. We reported a direct role of STAT6 in the induction and function of Treg cells during CAC development and suggest that STAT6 is a potential target for the modulation of immune response in colitis and CAC.


Assuntos
Neoplasias Associadas a Colite/genética , Neoplasias Colorretais/genética , Inflamação/genética , Fator de Transcrição STAT6/genética , Animais , Neoplasias Associadas a Colite/imunologia , Neoplasias Associadas a Colite/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Inflamação/imunologia , Inflamação/patologia , Interleucina-10/genética , Camundongos , Camundongos Knockout , Linfócitos T Reguladores/imunologia , Fator de Crescimento Transformador beta/genética
10.
Oncol Lett ; 20(1): 455-464, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32565970

RESUMO

Signal transducer and activator of transcription 6 (STAT6) is a member of the STAT family of proteins that serve key roles in the initiation of tumorigenesis and malignant transformation. STAT6 is highly expressed in several types of cancer, including breast, pancreatic, prostate and colorectal cancer. STAT6 transduces signals in response to the binding of interleukin (IL)-4 and IL-13 to their receptors and regulates the expression of genes involved in the immune response, cell survival, tumor proliferation and metastasis. Patients with colorectal cancer exhibit high STAT6 activity in the colonic epithelium, and STAT6 expression is associated with lower survival rates, lymph node metastasis, changes in the epithelial barrier function and alterations in the inflammatory response. A number of studies investigating experimental models and cancer cell lines have revealed that STAT6 is associated with tumor growth and development, as well as with increased invasion and metastasis, suggesting that STAT6 inhibition may serve as a novel therapeutic strategy in colon cancer. The present review summarizes the evidence with regard to the implications of STAT6 in cancer biology and the direct and indirect effects on colon tumor transformation. Furthermore, the current treatment strategies targeting the IL-4/IL-13/STAT6 axis in colon cancer are discussed.

11.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244885

RESUMO

Colorectal cancer (CRC) is one of the most widespread and deadly types of neoplasia around the world, where the inflammatory microenvironment has critical importance in the process of tumor growth, metastasis, and drug resistance. Despite its limited effectiveness, 5-fluorouracil (5-FU) is the main drug utilized for CRC treatment. The combination of 5-FU with other agents modestly increases its effectiveness in patients. Here, we evaluated the anti-inflammatory Trimethylglycine and the Signal transducer and activator of transcription (STAT6) inhibitor AS1517499, as possible adjuvants to 5-FU in already established cancers, using a model of colitis-associated colon cancer (CAC). We found that these adjuvant therapies induced a remarkable reduction of tumor growth when administrated together with 5-FU, correlating with a reduction in STAT6-phosphorylation. This reduction upgraded the effect of 5-FU by increasing both levels of apoptosis and markers of cell adhesion such as E-cadherin, whereas decreased epithelial-mesenchymal transition markers were associated with aggressive phenotypes and drug resistance, such as ß-catenin nuclear translocation and Zinc finger protein SNAI1 (SNAI1). Additionally, Il-10, Tgf-ß, and Il-17a, critical pro-tumorigenic cytokines, were downmodulated in the colon by these adjuvant therapies. In vitro assays on human colon cancer cells showed that Trimethylglycine also reduced STAT6-phosphorylation. Our study is relatively unique in focusing on the effects of the combined administration of AS1517499 and Trimethylglycine together with 5-FU on already established CAC which synergizes to markedly reduce the colon tumor load. Together, these data point to STAT6 as a valuable target for adjuvant therapy in colon cancer.


Assuntos
Adjuvantes Farmacêuticos/uso terapêutico , Carcinogênese/patologia , Colite/complicações , Neoplasias do Colo/tratamento farmacológico , Fluoruracila/uso terapêutico , Glicina/uso terapêutico , Pirimidinas/uso terapêutico , Fator de Transcrição STAT6/metabolismo , Adjuvantes Farmacêuticos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Colite/patologia , Neoplasias do Colo/etiologia , Neoplasias do Colo/patologia , Citocinas/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Fluoruracila/farmacologia , Glicina/farmacologia , Humanos , Inflamação/patologia , Camundongos Endogâmicos BALB C , Monócitos/metabolismo , Fosforilação/efeitos dos fármacos , Pirimidinas/farmacologia , beta Catenina/metabolismo
12.
Immunotherapy ; 12(1): 9-24, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31914828

RESUMO

Aim: Glucose intolerance associates with M1/M2 macrophage unbalance. We thus wanted to examine the effect of M2 macrophage administration on mouse model of glucose intolerance. Materials & methods: C57BL/6 mice fed a high-fat diet (HFD) for 12 weeks and then received thrice 20 mg/kg streptozotocin (HFD-GI). Bone marrow-derived stem cells were collected from donor mice and differentiated/activated into M2 macrophages for intraperitoneal administration into HFD-GI mice. Results: M2 macrophage treatment abolished glucose intolerance independently of obesity. M2 macrophage administration increased IL-10 in visceral adipose tissue and serum, but showed no effect on serum insulin. While nitric oxide synthase-2 and arginase-1 remained unaltered, M2 macrophage treatment restored AKT phosphorylation in visceral adipose tissue. Conclusion: M2 macrophage treatment abolishes glucose intolerance by increasing IL-10 and phosphorylated AKT.


Assuntos
Diabetes Mellitus Tipo 2/terapia , Imunoterapia/métodos , Interleucina-10/metabolismo , Macrófagos/imunologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Diabetes Mellitus Tipo 2/imunologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Intolerância à Glucose , Humanos , Resistência à Insulina , Interleucina-10/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Estreptozocina , Células Th2/imunologia
13.
Int J Cancer ; 145(11): 3126-3139, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31407335

RESUMO

Inflammation is currently considered a hallmark of cancer and plays a decisive role in different stages of tumorigenesis, including initiation, promotion, progression, metastasis and resistance to antitumor therapies. Colorectal cancer is a disease widely associated with local chronic inflammation. Additionally, extrinsic factors such as infection may beneficially or detrimentally alter cancer progression. Several reports have noted the ability of various parasitic infections to modulate cancer development, favoring tumor progression in many cases and inhibiting tumorigenesis in others. The aim of our study was to determine the effects of excreted/secreted products of the helminth Taenia crassiceps (TcES) as a treatment in a murine model of colitis-associated colon cancer (CAC). Here, we found that after inducing CAC, treatment with TcES was able to reduce inflammatory cytokines such as IL-1ß, TNF-α, IL-33 and IL-17 and significantly attenuate colon tumorigenesis. This effect was associated with the inhibition of signal transducer and activator of transcription 3 and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) phosphorylation. Furthermore, we determined that TcES interfered with LPS-induced NF-κB p65 activation in human colonic epithelial cell lines in a Raf-1 proto-oncogene-dependent manner. Moreover, in three-dimensional cultures, TcES promoted reorganization of the actin cytoskeleton, altering cell morphology and forming colonospheres, features associated with a low grade of aggressiveness. Our study demonstrates a remarkable effect of helminth-derived molecules on suppressing ongoing colorectal cancer by downregulating proinflammatory and protumorigenic signaling pathways.


Assuntos
Anti-Inflamatórios/administração & dosagem , Azoximetano/efeitos adversos , Colite/tratamento farmacológico , Neoplasias do Colo/tratamento farmacológico , Proteínas de Helminto/administração & dosagem , Taenia/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Colite/induzido quimicamente , Colite/complicações , Neoplasias do Colo/etiologia , Modelos Animais de Doenças , Feminino , Proteínas de Helminto/farmacologia , Humanos , Interleucina-1beta/metabolismo , Interleucina-33/metabolismo , Camundongos , NF-kappa B/metabolismo , Fosforilação , Proto-Oncogene Mas , Fator de Transcrição STAT3/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
15.
Cancers (Basel) ; 10(9)2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30235866

RESUMO

Signal transducer and activator of transcription 1 (STAT1) is part of the Janus kinase (JAK/STAT) signaling pathway that controls critical events in intestinal immune function related to innate and adaptive immunity. Recent studies have implicated STAT1 in tumor⁻stroma interactions, and its expression and activity are perturbed during colon cancer. However, the role of STAT1 during the initiation of inflammation-associated cancer is not clearly understood. To determine the role of STAT1 in colitis-associated colorectal cancer (CAC), we analyzed the tumor development and kinetics of cell recruitment in wild-type WT or STAT1-/- mice treated with azoxymethane (AOM) and dextran sodium sulfate (DSS). Following CAC induction, STAT1-/- mice displayed an accelerated appearance of inflammation and tumor formation, and increased damage and scores on the disease activity index (DAI) as early as 20 days after AOM-DSS exposure compared to their WT counterparts. STAT1-/- mice showed elevated colonic epithelial cell proliferation in early stages of injury-induced tumor formation and decreased apoptosis in advanced tumors with over-expression of the anti-apoptotic protein Bcl2 at the colon. STAT1-/- mice showed increased accumulation of Ly6G⁺Ly6C-CD11b⁺ cells in the spleen at 20 days of CAC development with concomitant increases in the production of IL-17A, IL-17F, and IL-22 cytokines compared to WT mice. Our findings suggest that STAT1 plays a role as a tumor suppressor molecule in inflammation-associated carcinogenesis, particularly during the very early stages of CAC initiation, modulating immune responses as well as controlling mechanisms such as apoptosis and cell proliferation.

16.
J Immunol Res ; 2018: 2737040, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29850624

RESUMO

The effect of metabolic syndrome on human monocyte subpopulations has not yet been studied. Our main goal was to examine monocyte subpopulations in metabolic syndrome patients, while also identifying the risk factors that could directly influence these cells. Eighty-six subjects were divided into metabolic syndrome patients and controls. Monocyte subpopulations were quantified by flow cytometry, and interleukin- (IL-) 1ß secretion levels were measured by ELISA. Primary human monocytes were cultured in low or elevated concentrations of high-density lipoprotein (HDL) and stimulated with lipopolysaccharide (LPS). The nonclassical monocyte (NCM) percentage was significantly increased in metabolic syndrome patients as compared to controls, whereas classical monocytes (CM) were reduced. Among all metabolic syndrome risk factors, HDL reduction exhibited the most important correlation with monocyte subpopulations and then was studied in vitro. Low HDL concentration reduced the CM percentage, whereas it increased the NCM percentage and IL-1ß secretion in LPS-treated monocytes. The LPS effect was abolished when monocytes were cultured in elevated HDL concentrations. Concurring with in vitro results, IL-1ß serum values significantly increased in metabolic syndrome patients with low HDL levels as compared to metabolic syndrome patients without HDL reduction. Our data demonstrate that HDL directly modulates monocyte subpopulations in metabolic syndrome.


Assuntos
Dietoterapia , Interleucina-1beta/metabolismo , Lipoproteínas HDL/metabolismo , Síndrome Metabólica/imunologia , Monócitos/fisiologia , Adulto , Células Cultivadas , Feminino , Citometria de Fluxo , Humanos , Lipopolissacarídeos/imunologia , Masculino , Síndrome Metabólica/dietoterapia , Pessoa de Meia-Idade , Cultura Primária de Células , Adulto Jovem
17.
J Cancer ; 9(2): 239-249, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29344269

RESUMO

Colorectal cancer (CRC) is the second most commonly diagnosed cancer in women and the third in men in North America and Europe. CRC is associated with inflammatory responses in which intestinal pathology is caused by different cell populations including a T cell dysregulation that concludes in an imbalance between activated T (Tact) and regulatory T (Treg) cells. Treg cells are CD4+Foxp3+ cells that actively suppress pathological and physiological immune responses, contributing to the maintenance of immune homeostasis. A tumor-promoting function for Treg cells has been suggested in CRC, but the kinetics of Treg cells during CRC development are poorly known. Therefore, using a mouse model of colitis-associated colon cancer (CAC) induced by azoxymethane and dextran sodium sulfate, we observed the dynamic and differential kinetics of Treg cells in blood, spleen and mesenteric lymph nodes (MLNs) as CAC progresses, highlighting a significant reduction in Treg cells in blood and spleen during early CAC development, whereas increasing percentages of Treg cells were detected in late stages in MLNs. Interestingly, when Treg cells were decreased, Tact cells were increased and vice versa. Treg cells from late stages of CAC displayed an activated phenotype by expressing PD1, CD127 and Tim-3, suggesting an increased suppressive capacity. Suppression assays showed that T-CD4+ and T-CD8+ cells were suppressed more efficiently by MLN Treg cells from CAC animals. Finally, an antibody-mediated reduction in Treg cells during early CAC development resulted in a better prognostic value, because animals showed a reduction in tumor progression associated with an increased percentage of activated CD4+CD25+Foxp3- and CD8+CD25+ T cells in MLNs, suggesting that Treg cells suppress T cell activation at early steps during CAC development.

18.
Cancer Immunol Res ; 5(5): 385-396, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28385737

RESUMO

Colitis-associated colon cancer (CAC) is one of the most common malignant neoplasms and a leading cause of death. The immunologic factors associated with CAC development are not completely understood. Signal transducer and activator of transcription 6 (STAT6) is part of an important signaling pathway for modulating intestinal immune function and homeostasis. However, the role of STAT6 in colon cancer progression is unclear. Following CAC induction in wild-type (WT) and STAT6-deficient mice (STAT6-/-), we found that 70% of STAT6-/- mice were tumor-free after 8 weeks, whereas 100% of WT mice developed tumors. STAT6-/- mice displayed fewer and smaller colorectal tumors than WT mice; this reduced tumorigenicity was associated with decreased proliferation and increased apoptosis in the colonic mucosa in the early steps of tumor progression. STAT6-/- mice also exhibited reduced inflammation, diminished concentrations COX2 and nuclear ß-catenin protein in the colon, and decreased mRNA expression of IL17A and TNFα, but increased IL10 expression when compared with WT mice. Impaired mucosal expression of CCL9, CCL25, and CXCR2 was also observed. In addition, the number of circulating CD11b+Ly6ChiCCR2+ monocytes and CD11b+Ly6ClowLy6G+ granulocytes was both decreased in a STAT6-dependent manner. Finally, WT mice receiving a STAT6 inhibitor in vivo confirmed a significant reduction in tumor load as well as less intense signs of CAC. Our results demonstrate that STAT6 is critical in the early steps of CAC development for modulating inflammatory responses and controlling cell recruitment and proliferation. Thus, STAT6 may represent a promising target for CAC treatment. Cancer Immunol Res; 5(5); 385-96. ©2017 AACR.


Assuntos
Colite/complicações , Neoplasias do Colo/etiologia , Neoplasias do Colo/prevenção & controle , Fator de Transcrição STAT6/deficiência , Animais , Apoptose , Azoximetano , Proliferação de Células , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Colo/metabolismo , Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Ciclo-Oxigenase 2/metabolismo , Citocinas/genética , Sulfato de Dextrana , Feminino , Inflamação , Camundongos Endogâmicos BALB C , Camundongos Knockout , RNA Mensageiro/metabolismo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , beta Catenina/metabolismo
19.
Mem. Inst. Oswaldo Cruz ; 111(12): 757-764, Dec. 2016. graf
Artigo em Inglês | LILACS | ID: biblio-829258

RESUMO

We evaluated the effects of a non-hepatotropic parasite infection (Taenia crassiceps) on the outcome of acetaminophen-induced acute liver failure in mice. Uninfected and T. crassiceps infected mice orally received either 300 mg/kg acetaminophen or water as vehicle (n = 5 per group). Survival analysis, hepatocyte necrosis, alanine aminotransferase (ALT) levels, CYP2E1 protein, interleukin (IL-) 5, and IL-6 were assessed for all groups. All infected mice died within 16 h after exposure to acetaminophen (Tc+APAP group), whereas only one-third of uninfected animals exposed to acetaminophen (APAP group) died. Uninfected (Control group) and infected (Tc group) mice that received the vehicle showed no liver damage. Tc+APAP mice exhibited massive liver necrosis characterised by marked balloning degeneration of hepatocytes and higher serum ALT compared to Control, Tc, and APAP animals. Liver tissue from Tc+APAP mice also displayed increased expression of CYP2E1 protein and higher mRNA and protein levels of IL-5 and IL-6 compared to the other groups. These findings suggest that non-hepatotropic parasite infections may increase mortality following acute liver failure by promoting hepatocyte necrosis via IL-5 and IL-6-dependent CYP2E1 overproduction. This study identifies new potential risk factors associated with severe acute liver failure in patients.


Assuntos
Animais , Feminino , Acetaminofen , Analgésicos não Narcóticos , Falência Hepática Aguda , Teníase/parasitologia , Acetaminofen/administração & dosagem , Alanina Transaminase/sangue , Analgésicos não Narcóticos/administração & dosagem , Biomarcadores/sangue , Citocromo P-450 CYP2E1/biossíntese , Citocromo P-450 CYP2E1/sangue , Modelos Animais de Doenças , Hepatócitos/parasitologia , Hepatócitos/patologia , Interleucina-5/sangue , Interleucina-6/sangue , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/mortalidade , Falência Hepática Aguda/parasitologia , Falência Hepática Aguda/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Teníase/patologia
20.
Mem Inst Oswaldo Cruz ; 111(12): 757-764, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27812602

RESUMO

We evaluated the effects of a non-hepatotropic parasite infection (Taenia crassiceps) on the outcome of acetaminophen-induced acute liver failure in mice. Uninfected and T. crassiceps infected mice orally received either 300 mg/kg acetaminophen or water as vehicle (n = 5 per group). Survival analysis, hepatocyte necrosis, alanine aminotransferase (ALT) levels, CYP2E1 protein, interleukin (IL-) 5, and IL-6 were assessed for all groups. All infected mice died within 16 h after exposure to acetaminophen (Tc+APAP group), whereas only one-third of uninfected animals exposed to acetaminophen (APAP group) died. Uninfected (Control group) and infected (Tc group) mice that received the vehicle showed no liver damage. Tc+APAP mice exhibited massive liver necrosis characterised by marked balloning degeneration of hepatocytes and higher serum ALT compared to Control, Tc, and APAP animals. Liver tissue from Tc+APAP mice also displayed increased expression of CYP2E1 protein and higher mRNA and protein levels of IL-5 and IL-6 compared to the other groups. These findings suggest that non-hepatotropic parasite infections may increase mortality following acute liver failure by promoting hepatocyte necrosis via IL-5 and IL-6-dependent CYP2E1 overproduction. This study identifies new potential risk factors associated with severe acute liver failure in patients.


Assuntos
Acetaminofen , Analgésicos não Narcóticos , Falência Hepática Aguda , Teníase/parasitologia , Acetaminofen/administração & dosagem , Alanina Transaminase/sangue , Analgésicos não Narcóticos/administração & dosagem , Animais , Biomarcadores/sangue , Citocromo P-450 CYP2E1/biossíntese , Citocromo P-450 CYP2E1/sangue , Modelos Animais de Doenças , Feminino , Hepatócitos/parasitologia , Hepatócitos/patologia , Interleucina-5/sangue , Interleucina-6/sangue , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/mortalidade , Falência Hepática Aguda/parasitologia , Falência Hepática Aguda/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Teníase/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA