Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
iScience ; 27(5): 109638, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38650986

RESUMO

The neural network of the enteric nervous system (ENS) underlies gastrointestinal functions. However, the molecular mechanisms involved in enteric neuronal connectivity are poorly characterized. Here, we studied the role of semaphorin 5A (Sema5A), previously characterized in the central nervous system, on ENS neuronal connectivity. Sema5A is linked to autism spectrum disorder (ASD), a neurodevelopmental disorder frequently associated with gastrointestinal comorbidities, and potentially associated with ENS impairments. This study investigated in rat enteric neuron cultures and gut explants the role of Sema5A on enteric neuron connectivity and the impact of ASD-associated mutations on Sema5A activity. Our findings demonstrated that Sema5A promoted axonal complexity and reduced functional connectivity in enteric neurons. Strikingly, the ASD-associated mutation S956G in Sema5A strongly affected these activities. This study identifies a critical role of Sema5A in the ENS as a regulator of neuronal connectivity that might be compromised in ASD.

2.
Sci Rep ; 13(1): 16902, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803037

RESUMO

Patients with spinal cord injury (SCI) suffer from major bowel dysfunction, whose exact pathophysiology, particularly the involvement of the enteric nervous system or epithelial dysfunction is poorly understood. Herein, we aimed to characterize the mucosal biopsies of the right and left colon in SCI patients vs controls (CT): (1) remodeling of key enteric neurotransmitters, (2) remodeling of enteroendocrine cells, and (3) mucosal inflammation compared to those in controls. In SCI, mucosal ACh concentration was lower in the right colon as compared to CT, but no change was observed in the left colon, and AChE expression was lower in both the right and left colons than in CT. While the VIP concentration was similar in the right and left colons, VIP mRNA expression was increased in the right colon and decreased in the left colon, in SCI patients as compared to CT. Interestingly, 5-HT concentration was reduced in the left colon but not in the right colon in SCI patients. Moreover, in SCI patients, as compared to CT, SERT mRNA expression was selectively increased in the left colon while TPH1 mRNA expression was increased in the right and left colons. Although mucosal TNFα and IL-1ß mRNA expression did not significantly differ between SCI and CT groups, we identified a significant positive correlation between TNFα and IL-1ß mRNA expression and left colon transit time in the SCI group. In conclusion, region-specific changes occur in the enteric neurotransmitter, serotonergic, and inflammatory pathways in the colon of SCI patients. The significant correlations between these pathways and clinical parameters in the left colon further set a scientific basis for designing therapeutic targets to improve colonic motor dysfunction in patients.Biobank information: Spinal cord injury patients: PHRC ConstiCAPE-clinical trial NCT02566746. Controls: Anosain-clinical trial NCT03054415 and biobank of the "Institut des Maladies de l'Appareil Digestif (IMAD)" registered under number DC-2008-402.


Assuntos
Sistema Nervoso Entérico , Traumatismos da Medula Espinal , Humanos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Colo/patologia , Sistema Nervoso Entérico/metabolismo , Células Enteroendócrinas , Neurotransmissores/metabolismo , RNA Mensageiro/metabolismo , Medula Espinal
3.
Front Neurosci ; 16: 1062253, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685225

RESUMO

The enteric nervous system (ENS) is the intrinsic nervous system that innervates the entire digestive tract and regulates major digestive functions. Recent evidence has shown that functions of the ENS critically rely on enteric neuronal connectivity; however, experimental models to decipher the underlying mechanisms are limited. Compared to the central nervous system, for which pure neuronal cultures have been developed for decades and are recognized as a reference in the field of neuroscience, an equivalent model for enteric neurons is lacking. In this study, we developed a novel model of highly pure rat embryonic enteric neurons with dense and functional synaptic networks. The methodology is simple and relatively fast. We characterized enteric neurons using immunohistochemical, morphological, and electrophysiological approaches. In particular, we demonstrated the applicability of this culture model to multi-electrode array technology as a new approach for monitoring enteric neuronal network activity. This in vitro model of highly pure enteric neurons represents a valuable new tool for better understanding the mechanisms involved in the establishment and maintenance of enteric neuron synaptic connectivity and functional networks.

4.
J Biol Chem ; 297(5): 101300, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34648765

RESUMO

Highly organized circuits of enteric neurons are required for the regulation of gastrointestinal functions, such as peristaltism or migrating motor complex. However, the factors and molecular mechanisms that regulate the connectivity of enteric neurons and their assembly into functional neuronal networks are largely unknown. A better understanding of the mechanisms by which neurotrophic factors regulate this enteric neuron circuitry is paramount to understanding enteric nervous system (ENS) physiology. EphB2, a receptor tyrosine kinase, is essential for neuronal connectivity and plasticity in the brain, but so far its presence and function in the ENS remain largely unexplored. Here we report that EphB2 is expressed preferentially by enteric neurons relative to glial cells throughout the gut in rats. We show that in primary enteric neurons, activation of EphB2 by its natural ligand ephrinB2 engages ERK signaling pathways. Long-term activation with ephrinB2 decreases EphB2 expression and reduces molecular and functional connectivity in enteric neurons without affecting neuronal density, ganglionic fiber bundles, or overall neuronal morphology. This is highlighted by a loss of neuronal plasticity markers such as synapsin I, PSD95, and synaptophysin, and a decrease of spontaneous miniature synaptic currents. Together, these data identify a critical role for EphB2 in the ENS and reveal a unique EphB2-mediated molecular program of synapse regulation in enteric neurons.


Assuntos
Sistema Nervoso Entérico/enzimologia , Sistema de Sinalização das MAP Quinases , Plasticidade Neuronal , Neurônios/enzimologia , Receptor EphB2/metabolismo , Sinapses/metabolismo , Animais , Feminino , Ratos , Ratos Sprague-Dawley
5.
Microorganisms ; 9(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34442802

RESUMO

Autism Spectrum Disorders (ASDs) are neurodevelopmental disorders defined by impaired social interactions and communication with repetitive behaviors, activities, or interests. Gastrointestinal (GI) disturbances and gut microbiota dysbiosis are frequently associated with ASD in childhood. However, it is not known whether microbiota dysbiosis in ASD patients also occurs in adulthood. Further, the consequences of altered gut microbiota on digestive functions and the enteric nervous system (ENS) remain unexplored. Therefore, we studied, in mice, the ability offecal supernatant (FS) from adult ASD patients to induce GI dysfunctions and ENS remodeling. First, the analyses of the fecal microbiota composition in adult ASD patients indicated a reduced α-diversity and increased abundance of three bacterial 16S rRNA gene amplicon sequence variants compared to healthy controls (HC). The transfer of FS from ASD patients (FS-ASD) to mice decreased colonic barrier permeability by 29% and 58% compared to FS-HC for paracellular and transcellular permeability, respectively. These effects are associated with the reduced expression of the tight junction proteins JAM-A, ZO-2, cingulin, and proinflammatory cytokines TNFα and IL1ß. In addition, the expression of glial and neuronal molecules was reduced by FS-ASD as compared to FS-HC in particular for those involved in neuronal connectivity (ßIII-tubulin and synapsin decreased by 31% and 67%, respectively). Our data suggest that changes in microbiota composition in ASD may contribute to GI alterations, and in part, via ENS remodeling.

6.
Sci Rep ; 10(1): 21725, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33303794

RESUMO

In Hirschsprung's disease (HSCR), postoperative course remains unpredictable. Our aim was to define predictive factors of the main postoperative complications: obstructive symptoms (OS) and Hirschsprung-associated enterocolitis (HAEC). In this prospective multicentre cohort study, samples of resected bowel were collected at time of surgery in 18 neonates with short-segment HSCR in tertiary care hospitals. OS and HAEC were noted during postoperative follow-up. We assessed the enteric nervous system and the intestinal epithelial barrier (IEB) in ganglionic segments by combining immunohistochemical, proteomic and transcriptomic approaches, with functional ex vivo analysis of motility and para/transcellular permeability. Ten HSCR patients presented postoperative complications (median follow-up 23.5 months): 6 OS, 4 HAEC (2 with OS), 2 diarrhoea (without OS/HAEC). Immunohistochemical analysis showed a significant 41% and 60% decrease in median number of nNOS-IR myenteric neurons per ganglion in HSCR with OS as compared to HSCR with HAEC/diarrhoea (without OS) and HSCR without complications (p = 0.0095; p = 0.002, respectively). Paracellular and transcellular permeability was significantly increased in HSCR with HAEC as compared to HSCR with OS/diarrhoea without HAEC (p = 0.016; p = 0.009) and HSCR without complications (p = 0.029; p = 0.017). This pilot study supports the hypothesis that modulating neuronal phenotype and enhancing IEB permeability may treat or prevent postoperative complications in HSCR.


Assuntos
Sistema Nervoso Entérico/fisiopatologia , Enterocolite/epidemiologia , Doença de Hirschsprung/cirurgia , Mucosa Intestinal/fisiopatologia , Complicações Pós-Operatórias/epidemiologia , Pré-Escolar , Diarreia/epidemiologia , Diarreia/etiologia , Diarreia/prevenção & controle , Enterocolite/etiologia , Enterocolite/prevenção & controle , Seguimentos , Gânglios/fisiopatologia , Humanos , Lactente , Recém-Nascido , Mucosa Intestinal/inervação , Projetos Piloto , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Estudos Prospectivos , Fatores de Tempo
7.
Sci Rep ; 10(1): 15119, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32934297

RESUMO

Most of the gut functions are controlled by the enteric nervous system (ENS), a complex network of enteric neurons located throughout the wall of the gastrointestinal tract. The formation of ENS connectivity during the perinatal period critically underlies the establishment of gastrointestinal motility, but the factors involved in this maturation process remain poorly characterized. Here, we examined the role of Semaphorin 3A (Sema3A) on ENS maturation and its potential implication in Hirschsprung disease (HSCR), a developmental disorder of the ENS with impaired colonic motility. We found that Sema3A and its receptor Neuropilin 1 (NRP1) are expressed in the rat gut during the early postnatal period. At the cellular level, NRP1 is expressed by enteric neurons, where it is particularly enriched at growth areas of developing axons. Treatment of primary ENS cultures and gut explants with Sema3A restricts axon elongation and synapse formation. Comparison of the ganglionic colon of HSCR patients to the colon of patients with anorectal malformation shows reduced expression of the synaptic molecule synapsin 1 in HSCR, which is inversely correlated with Sema3A expression. Our study identifies Sema3A as a critical regulator of ENS connectivity and provides a link between altered ENS connectivity and HSCR.


Assuntos
Colo/patologia , Sistema Nervoso Entérico/patologia , Doença de Hirschsprung/patologia , Neurônios/patologia , Semaforina-3A/metabolismo , Sinapsinas/metabolismo , Animais , Colo/metabolismo , Sistema Nervoso Entérico/metabolismo , Feminino , Doença de Hirschsprung/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Neurônios/metabolismo , Ratos , Semaforina-3A/genética , Sinapsinas/genética
8.
Helicobacter ; 25(5): e12727, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32700438

RESUMO

BACKGROUND: Analysis of serum biomarkers for the assessment of atrophic gastritis (AG), considered as gastric precancerous lesion, is of growing interest and recommended by current guidelines. Our aim was to evaluate the diagnostic performance of a panel of biomarkers (GastroPanel®) for the detection of AG in France, a country of a low gastric cancer (GC) incidence. MATERIAL AND METHODS: In this prospective, multicenter, cross-sectional study, consecutive patients considered at increased risk of GC and undergoing upper endoscopy with gastric biopsies were included. Blood samples were collected for the analysis of GastroPanel® (association of Pepsinogens I and II, Gastrin-17, and Helicobacter pylori serology) using ELISA. The results of GastroPanel® were compared to the results of histology considered as the reference. RESULTS: Between 2016 and 2019, 344 patients (148 cases with AG, 196 controls without AG) were included. Sensitivity, specificity, positive, and negative predictive values for the detection of AG by GastroPanel® were of 39.9% (95% CI 31.9; 48.2), 93.4% (95% CI 88.9; 96.4), 81.9 (95% CI 71.1; 90.0), and 67.3 (95% CI 61.4; 72.8), respectively. The sensitivity was significantly higher for the detection of severe AG [60.8% (95% CI 46.1; 74.6) P = .015] and corpus AG [61.0% (95% CI 49.2; 72.0), P = .004]. Diagnostic performances of GastroPanel® tended to be better than those of Pepsinogen I alone, but the difference did not reach statistical significance (P = .068). CONCLUSION: Serum pepsinogen and GastroPanel® tests show promising results for the detection of AG, especially of corpus AG and severe AG, in patients at high risk of GC in France.


Assuntos
Gastrite Atrófica/diagnóstico , Infecções por Helicobacter/diagnóstico , Neoplasias Gástricas/diagnóstico , Adulto , Idoso , Anticorpos Antibacterianos/sangue , Biomarcadores/sangue , Estudos Transversais , Ensaio de Imunoadsorção Enzimática , Feminino , França/epidemiologia , Gastrinas/sangue , Gastrite Atrófica/epidemiologia , Infecções por Helicobacter/epidemiologia , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Pepsinogênio A/sangue , Pepsinogênio C/sangue , Estudos Prospectivos , Sensibilidade e Especificidade , Neoplasias Gástricas/epidemiologia
9.
FASEB J ; 33(1): 770-781, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067379

RESUMO

Early-life adversity is a major risk factor for the development of diseases later in life. Maternal protein restriction (MPR) is associated with morbidities in offspring affecting multiple organs, but its impact on the gastrointestinal (GI) tract remains poorly studied. Using a rat model, we examined the consequences of MPR on GI function and on the enteric nervous system (ENS) in the offspring at postnatal d 35 under basal state and following a water avoidance stress (WAS). Compared with control rats, MPR rats exhibited greater colonic motility, permeability, and corticosteronemia. In contrast to controls, MPR rats presented a blunted functional and corticosteronemic response to WAS. Furthermore, MPR rats showed an increased proportion of choline acetyltransferase-immunoreactive (ChAT-IR) neurons and a reduced level of autophagy in colonic myenteric neurons. In ENS cultures, corticosterone treatment increased the proportion of ChAT-IR neurons and reduced autophagy level in enteric neurons. Inhibition of autophagy in ENS cultures resulted in a higher vulnerability of enteric neurons to a cellular stress. Altogether, this study suggests that MPR induced GI dysfunction and ENS alterations in offspring rats and that MPR-induced increased corticosteronemia might be involved in ENS remodeling and altered responsiveness of the gut to stressors later in life.-Aubert, P., Oleynikova, E., Rizvi, H., Ndjim, M., Le Berre-Scoul, C., Grohard, P. A., Chevalier, J., Segain, J.-P., Le Drean, G., Neunlist, M., Boudin, H. Maternal protein restriction induces gastrointestinal dysfunction and enteric nervous system remodeling in rat offspring.


Assuntos
Proteínas Alimentares/administração & dosagem , Sistema Nervoso Entérico/fisiopatologia , Trato Gastrointestinal/fisiopatologia , Exposição Materna , Animais , Autofagia , Tamanho Corporal , Peso Corporal , Colina O-Acetiltransferase/metabolismo , Colo/fisiopatologia , Corticosterona/sangue , Sistema Nervoso Entérico/enzimologia , Feminino , Absorção Intestinal , Modelos Animais , Neurônios/enzimologia , Neurônios/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Ratos , Ratos Sprague-Dawley
10.
J Neurochem ; 148(6): 746-760, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30589944

RESUMO

The protein alpha-synuclein whose expression is strongly implicated in Parkinson's disease (PD) is not only expressed in the CNS but also in the enteric nervous system (ENS). The growing body of evidence suggesting that gastrointestinal inflammation is involved in the development of PD led us to investigate the effects of inflammation on alpha-synuclein expression in primary culture of rat ENS and in mice with dextran sulfate sodium-induced colitis. Using western blot and qPCR, we found that both lipopolysaccharide and a combination of tumor necrosis factor-α and interleukin 1-ß decreased the expression levels of alpha-synuclein in primary culture of rat ENS, an effect that was prevented in the presence of the p38 inhibitors SB203580 and BIRB 796. Lipopolysaccharide and tumor necrosis factor-α/interleukin 1-ß had no effect on alpha-synuclein expression in primary culture of rat CNS and in human erythroid leukemia cells. In mice, acute but not chronic dextran sulfate sodium-induced colitis was associated with a decreased expression of colonic alpha-synuclein. As a whole, our findings indicate that acute inflammatory insults down-regulate alpha-synuclein expression in the ENS via a p38 pathway. They provide new insights into the widely discussed concepts of alpha-synuclein expression and aggregation in the ENS in PD and raise issues about the possible role of gastrointestinal inflammation in the development of PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.


Assuntos
Sistema Nervoso Entérico/metabolismo , Inflamação/metabolismo , Neurônios/metabolismo , alfa-Sinucleína/biossíntese , Animais , Regulação para Baixo , Sistema Nervoso Entérico/patologia , Humanos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
11.
J Physiol ; 595(2): 583-598, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27436013

RESUMO

KEY POINTS: Unlike astrocytes in the brain, the potential role of enteric glial cells (EGCs) in the formation of the enteric neuronal circuit is currently unknown. To examine the role of EGCs in the formation of the neuronal network, we developed a novel neuron-enriched culture model from embryonic rat intestine grown in indirect coculture with EGCs. We found that EGCs shape axonal complexity and synapse density in enteric neurons, through purinergic- and glial cell line-derived neurotrophic factor-dependent pathways. Using a novel and valuable culture model to study enteric neuron-glia interactions, our study identified EGCs as a key cellular actor regulating neuronal network maturation. ABSTRACT: In the nervous system, the formation of neuronal circuitry results from a complex and coordinated action of intrinsic and extrinsic factors. In the CNS, extrinsic mediators derived from astrocytes have been shown to play a key role in neuronal maturation, including dendritic shaping, axon guidance and synaptogenesis. In the enteric nervous system (ENS), the potential role of enteric glial cells (EGCs) in the maturation of developing enteric neuronal circuit is currently unknown. A major obstacle in addressing this question is the difficulty in obtaining a valuable experimental model in which enteric neurons could be isolated and maintained without EGCs. We adapted a cell culture method previously developed for CNS neurons to establish a neuron-enriched primary culture from embryonic rat intestine which was cultured in indirect coculture with EGCs. We demonstrated that enteric neurons grown in such conditions showed several structural, phenotypic and functional hallmarks of proper development and maturation. However, when neurons were grown without EGCs, the complexity of the axonal arbour and the density of synapses were markedly reduced, suggesting that glial-derived factors contribute strongly to the formation of the neuronal circuitry. We found that these effects played by EGCs were mediated in part through purinergic P2Y1 receptor- and glial cell line-derived neurotrophic factor-dependent pathways. Using a novel and valuable culture model to study enteric neuron-glia interactions, our study identified EGCs as a key cellular actor required for neuronal network maturation.


Assuntos
Intestinos/embriologia , Neurogênese/fisiologia , Neuroglia/fisiologia , Neurônios/fisiologia , Animais , Células Cultivadas , Técnicas de Cocultura , Embrião de Mamíferos , Feminino , Intestinos/citologia , Gravidez , Ratos Sprague-Dawley
12.
Gastroenterology ; 148(5): 1002-1011.e4, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25655556

RESUMO

BACKGROUND & AIMS: Mediators released by the intestinal mucosa of patients with irritable bowel syndrome (IBS) affect the function of enteric and extrinsic sensory nerves, which can contribute to the development of symptoms. Little is known about the effects of mucosal mediators on intestinal neuroplasticity. We investigated how these mediators affect the phenotypes of colonic mucosa nerve fibers, neuron differentiation, and fiber outgrowth. METHODS: We analyzed mucosal biopsy samples collected from 101 patients with IBS and 23 asymptomatic healthy individuals (controls). We measured levels of neuronal-specific enolase, growth-associated protein 43, nerve growth factor (NGF), and tyrosine kinase receptor A (NTRK1) by immunohistochemistry and enzyme-linked immunosorbent assay. Primary rat enteric neurons and human SH-SY5Y cells were incubated with supernatants from the mucosal biopsies and analyzed by morphometric and polymerase chain reaction analyses. RESULTS: Compared with mucosal tissues of controls, mucosa from patients with IBS had a significant increase in the area of lamina propria occupied by neuronal-specific enolase-positive (57.7% increase) and growth-associated protein 43-positive fibers (56.1% increase) and staining density of NGF (89.3% increase) (P < .05 for all). Levels of NGF protein were also increased in tissues from patients with IBS vs controls (18% increase; P = .16) along with levels of NTRK1 (64% increase; P < .05). Mucosal supernatants from tissues of patients with IBS induced higher levels of neuritogenesis in primary culture of enteric neurons, compared with controls, and more NGF-dependent neuronal sprouting in SH-SY5Y cells. CONCLUSIONS: Nerve fiber density and sprouting, as well as expression of NGF and NTRK1, are significantly increased in mucosal tissues of patients with IBS. Mucosal mediators participate to these neuroplastic changes.


Assuntos
Colo/inervação , Sistema Nervoso Entérico/patologia , Mucosa Intestinal/inervação , Síndrome do Intestino Irritável/patologia , Neurite (Inflamação)/patologia , Neurogênese , Adulto , Idoso , Animais , Biomarcadores/metabolismo , Biópsia , Estudos de Casos e Controles , Linhagem Celular Tumoral , Colo/metabolismo , Sistema Nervoso Entérico/metabolismo , Feminino , Proteína GAP-43/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Síndrome do Intestino Irritável/metabolismo , Masculino , Pessoa de Meia-Idade , Fator de Crescimento Neural/metabolismo , Neurite (Inflamação)/metabolismo , Fosfopiruvato Hidratase/metabolismo , Ratos , Receptor trkA/metabolismo , Adulto Jovem
13.
J Virol ; 87(12): 6668-77, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23552407

RESUMO

In the model of Huh-7.5.1 hepatocyte cells infected by the JFH1 hepatitis C virus (HCV) strain, transcriptomic and proteomic studies have revealed modulations of pathways governing mainly apoptosis and cell cycling. Differences between transcriptomic and proteomic studies pointed to regulations occurring at the posttranscriptional level, including the control of mRNA translation. In this study, we investigated at the genome-wide level the translational regulation occurring during HCV infection. Sucrose gradient ultracentrifugation followed by microarray analysis was used to identify translationally regulated mRNAs (mRNAs associated with ribosomes) from JFH1-infected and uninfected Huh-7.5.1 cells. Translationally regulated mRNAs were found to correspond to genes enriched in specific pathways, including vesicular transport and posttranscriptional regulation. Interestingly, the strongest translational regulation was found for mRNAs encoding proteins involved in pre-mRNA splicing, mRNA translation, and protein folding. Strikingly, these pathways were not previously identified, through transcriptomic studies, as being modulated following HCV infection. Importantly, the observed changes in host mRNA translation were directly due to HCV replication rather than to HCV entry, since they were not observed in JFH1-infected Huh-7.5.1 cells treated with a potent HCV NS3 protease inhibitor. Overall, this study highlights the need to consider, beyond transcriptomic or proteomic studies, the modulation of host mRNA translation as an important aspect of HCV infection.


Assuntos
Hepacivirus/patogenicidade , Hepatócitos/metabolismo , Hepatócitos/virologia , Biossíntese de Proteínas , Linhagem Celular Tumoral , Centrifugação com Gradiente de Concentração , Genoma , Hepacivirus/genética , Hepacivirus/metabolismo , Hepatite C/virologia , Interações Hospedeiro-Patógeno , Humanos , Dados de Sequência Molecular , Análise de Sequência com Séries de Oligonucleotídeos , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética , Ribossomos/metabolismo , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA