Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Clin Cancer Res ; 25(15): 4775-4790, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31061069

RESUMO

PURPOSE: For the development of new anticancer therapeutic radiopharmaceuticals, including alpha particle emitters, it is important to determine the contribution of targeted effects in irradiated cells, and also of nontargeted effects in nonirradiated neighboring cells, because they may affect the therapeutic efficacy and contribute to side effects. EXPERIMENTAL DESIGN: Here, we investigated the contribution of nontargeted cytotoxic and genotoxic effects in vitro and in vivo (in xenografted mice) during alpha (212Pb/212Bi, 213Bi) and Auger (125I) radioimmunotherapy (RIT). RESULTS: Between 67% and 94% (alpha RIT) and 8% and 15% (Auger RIT) of cancer cells were killed by targeted effects, whereas 7% to 36% (alpha RIT) and 27% to 29% (Auger RIT) of cells were killed by nontargeted effects. We then demonstrated that the nontargeted cell response to alpha and Auger RIT was partly driven by lipid raft-mediated activation of p38 kinase and JNK. Reactive oxygen species also played a significant role in these nontargeted effects, as demonstrated by NF-κB activation and the inhibitory effects of antioxidant enzymes and radical scavengers. Compared with RIT alone, the use of RIT with ASMase inhibitor (imipramine) or with a lipid raft disruptor (e.g., methyl-beta-cyclodextrin or filipin) led to an increase in clonogenic cell survival in vitro and to larger tumors and less tissue DNA damage in vivo. These results were supported by an inhibitory effect of pravastatin on Auger RIT. CONCLUSIONS: Cell membrane-mediated nontargeted effects play a significant role during Auger and alpha RIT, and drugs that modulate cholesterol level, such as statins, could interfere with RIT efficacy.


Assuntos
Colesterol/metabolismo , Imipramina/farmacologia , MAP Quinase Quinase 4/metabolismo , Neoplasias/radioterapia , Radioimunoterapia/métodos , Compostos Radiofarmacêuticos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Inibidores da Captação Adrenérgica/farmacologia , Animais , Antibacterianos/farmacologia , Bismuto/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Filipina/farmacologia , Humanos , Radioisótopos do Iodo/farmacologia , Radioisótopos de Chumbo/farmacologia , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Neoplasias/metabolismo , Radioisótopos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto , beta-Ciclodextrinas/farmacologia
2.
Oncotarget ; 8(23): 37061-37079, 2017 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-28427157

RESUMO

Ovarian cancer is the leading cause of death in women with gynecological cancers and despite recent advances, new and more efficient therapies are crucially needed. Müllerian Inhibiting Substance type II Receptor (MISRII, also named AMHRII) is expressed in most ovarian cancer subtypes and is a novel potential target for ovarian cancer immunotherapy. We previously developed and tested 12G4, the first murine monoclonal antibody (MAb) against human MISRII. Here, we report the humanization, affinity maturation and glyco-engineering steps of 12G4 to generate the Fc-optimized 3C23K MAb, and the evaluation of its in vivo anti-tumor activity. The epitopes of 3C23K and 12G4 were strictly identical and 3C23K affinity for MISRII was enhanced by a factor of about 14 (KD = 5.5 × 10-11 M vs 7.9 × 10-10 M), while the use of the EMABling® platform allowed the production of a low-fucosylated 3C23K antibody with a 30-fold KD improvement of its affinity to FcγRIIIa. In COV434-MISRII tumor-bearing mice, 3C23K reduced tumor growth more efficiently than 12G4 and its combination with carboplatin was more efficient than each monotherapy with a mean tumor size of 500, 1100 and 100 mm3 at the end of treatment with 3C23K (10 mg/kg, Q3-4D12), carboplatin (60 mg/kg, Q7D4) and 3C23K+carboplatin, respectively. Conversely, 3C23K-FcKO, a 3C23K form without affinity for the FcγRIIIa receptor, did not display any anti-tumor effect in vivo. These results strongly suggested that 3C23K mechanisms of action are mainly Fc-related. In vitro, antibody-dependent cytotoxicity (ADCC) and antibody-dependent cell phagocytosis (ADCP) were induced by 3C23K, as demonstrated with human effector cells. Using human NK cells, 50% of the maximal lysis was obtained with a 46-fold lower concentration of low-fucosylated 3C23K (2.9 ng/ml) than of 3C23K expressed in CHO cells (133.35 ng/ml). As 3C23K induced strong ADCC with human PBMC but almost none with murine PBMC, antibody-dependent cell phagocytosis (ADCP) was then investigated. 3C23K-dependent (100 ng/ml) ADCP was more active with murine than human macrophages (only 10% of living target cells vs. about 25%). These in vitro results suggest that the reduced ADCC with murine effectors could be partially balanced by ADCP activity in in vivo experiments. Taken together, these preclinical data indicate that 3C23K is a new promising therapeutic candidate for ovarian cancer immunotherapy and justify its recent introduction in a phase I clinical trial.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Receptores de Peptídeos/imunologia , Receptores de Fatores de Crescimento Transformadores beta/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Anticorpos Monoclonais Humanizados/imunologia , Citotoxicidade Celular Dependente de Anticorpos/efeitos dos fármacos , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antineoplásicos/imunologia , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Feminino , Glicosilação , Humanos , Camundongos Nus , Neoplasias Ovarianas/imunologia , Neoplasias Ovarianas/patologia , Engenharia de Proteínas
3.
Antioxid Redox Signal ; 25(8): 467-84, 2016 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-27224059

RESUMO

AIMS: We investigated whether radiation-induced nontargeted effects are involved in the cytotoxic effects of anticell surface monoclonal antibodies labeled with Auger electron emitters, such as iodine 125 (monoclonal antibodies labeled with (125)I [(125)I-mAbs]). RESULTS: We showed that the cytotoxicity of (125)I-mAbs targeting the cell membrane of p53(+/+) HCT116 colon cancer cells is mainly due to nontargeted effects. Targeted and nontargeted cytotoxicities were inhibited in vitro following lipid raft disruption with Methyl-ß-cyclodextrin (MBCD) or filipin or use of radical oxygen species scavengers. (125)I-mAb efficacy was associated with acid sphingomyelinase activation and modulated through activation of the AKT, extracellular signal-related kinase ½ (ERK1/2), p38 kinase, c-Jun N-terminal kinase (JNK) signaling pathways, and also of phospholipase C-γ (PLC-γ), proline-rich tyrosine kinase 2 (PYK-2), and paxillin, involved in Ca(2+) fluxes. Moreover, the nontargeted response induced by directing 5-[(125)I]iodo-2'-deoxyuridine to the nucleus was comparable to that of (125)I-mAb against cell surface receptors. In vivo, we found that the statistical significance of tumor growth delay induced by (125)I-mAb was removed after MBCD treatment and observed oxidative DNA damage beyond the expected Auger electron range. These results suggest the involvement of nontargeted effects in vivo also. INNOVATION: Low-energy Auger electrons, such as those emitted by (125)I, have a short tissue range and are usually targeted to the nucleus to maximize their cytotoxicity. In this study, we show that targeting the cancer cell surface with (125)I-mAbs produces a lipid raft-mediated nontargeted response that compensates for the inferior efficacy of non-nuclear targeting. CONCLUSION: Our findings describe the mechanisms involved in the efficacy of (125)I-mAbs targeting the cancer cell surface. Antioxid. Redox Signal. 25, 467-484.


Assuntos
Membrana Celular/metabolismo , Membrana Celular/efeitos da radiação , Elétrons , Estresse Oxidativo/efeitos da radiação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Sobrevivência Celular/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Técnicas de Inativação de Genes , Genes p53 , Células HCT116 , Humanos , Imunoconjugados/farmacologia , Radioisótopos do Iodo/efeitos adversos , Sistema de Sinalização das MAP Quinases , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/metabolismo , Microdomínios da Membrana/efeitos da radiação , Modelos Biológicos , Fosfoproteínas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA