Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Microbiol Resour Announc ; 13(3): e0086123, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38294215

RESUMO

We report the draft genomes of four Kluyveromyces marxianus isolates obtained from the elaboration process of henequen (Agave fourcroydes) mezcal, a Mexican alcoholic beverage. The average nucleotide identity analysis revealed that isolates derived from agave plants are distinct from those from other environments, including agave fermentations.

2.
J Fungi (Basel) ; 9(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37623566

RESUMO

Seven Kluyveromyces marxianus isolates from the elaboration process of pulque and henequen mezcal were characterized. The isolates were identified based on the sequences of the D1/D2 domain of the 26S rRNA gene and the internal transcribed spacer (ITS-5.8S) region. Genetic differences were found between pulque and henequen mezcal isolates and within henequen mezcal isolates, as shown by different branching patterns in the ITS-5.8S phylogenetic tree and (GTG)5 microsatellite profiles, suggesting that the substrate and process selective conditions may give rise to different K. marxianus populations. All the isolates fermented and assimilated inulin and lactose and some henequen isolates could also assimilate xylose and cellobiose. Henequen isolates were more thermotolerant than pulque ones, which, in contrast, presented more tolerance to the cell wall-disturbing agent calcofluor white (CFW), suggesting that they had different cell wall structures. Additionally, depending on their origin, the isolates presented different maximum specific growth rate (µmax) patterns at different temperatures. Concerning tolerance to stress factors relevant for lignocellulosic hydrolysates fermentation, their tolerance limits were lower at 42 than 30 °C, except for glucose and furfural. Pulque isolates were less tolerant to ethanol, NaCl, and Cd. Finally, all the isolates could produce ethanol by simultaneous saccharification and fermentation (SSF) of a corncob hydrolysate under laboratory conditions at 42 °C.

3.
Biotechnol Lett ; 43(5): 1043-1050, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33590377

RESUMO

OBJECTIVES: To determine furfural biotransformation capabilities of Acinetobacter baylyi ADP1 and Acinetobacter schindleri ACE. RESULTS: Acinetobacter baylyi ADP1 and A. schindleri ACE could not use furfural as sole carbon source but when acetate was used as substrate, ADP1 and ACE biotransformed 1 g furfural/l in 5 and 9 h, respectively. In both cases, the product of this biotransformation was difurfuryl-ether as shown by FT-IR and 1H and 13C NMR spectroscopy. The presence of furfural decreased the specific growth rate in acetate by 27% in ADP1 and 53% in ACE. For both strains, the MIC of furfural was 1.25 g/l. Nonetheless, ADP1 biotransformed 2 g furfural/l at a rate of 1 g/l/h in the stationary phase of growth. A transcriptional analysis of possible dehydrogenases involved in this biotransformation, identified that the areB and frmA genes were highly overexpressed after the exposure of ADP1 to furfural. The products of these genes are a benzyl-alcohol dehydrogenase and an alcohol dehydrogenase. CONCLUSIONS: Acinetobacter baylyi ADP1 is a candidate for the biological detoxification of furfural, a fermentation inhibitor present in lignocellulosic hydrolysates, with the possible direct involvement of the AreB and FrmA enzymes in the process.


Assuntos
Acinetobacter/metabolismo , Furaldeído/metabolismo , Acetatos/metabolismo , Acinetobacter/efeitos dos fármacos , Acinetobacter/genética , Acinetobacter/crescimento & desenvolvimento , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biotransformação , Furaldeído/farmacologia , Furanos/metabolismo , Furanos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos
4.
Biotechnol Lett ; 43(4): 845-854, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33389270

RESUMO

The aim of this study was to characterize the growth of the fungus Leucoagaricus gongylophorus LEU18496, isolated from the fungus garden of the nest of leaf cutter ants Atta mexicana. The fungus garden was cultivated in an artificial laboratory nest and the fungus further grown in submerged (SmC) and solid state (SSC) cultures with sugarcane bagasse, grass or model substrates containing CM-cellulose, xylan or lignin. The CO2 production rate with grass in SmC (Vmax 34.76 mg CO2 Lgas-1 day- 1) was almost four times than SSC (Vmax 9.49 mg CO2 Lgas-1 day- 1), while the production rate obtained in sugarcane bagasse in SmC (Vmax 16.02 mg CO2 Lgas-1 day- 1) was almost three times than that for SSC (Vmax 5.42 mg CO2 Lgas-1 day- 1). In addition, the fungus grew with defined carbon substrates mixtures in SmC, but at different rates, first xylan, followed by CM-cellulose and lignin. Endoglucanase and xylanase activities (U mgprotein-1) were detected in all cultures, the specific activity was higher in the fungus-garden, 5.2 and 1.8; followed by SSC-grass, 1.5 and 0.8, and SSC-bagasse, 0.9 and 0.8, respectively. Laccase activity in the fungus-garden was 44.8 U L- 1 and 10.9 U L- 1 in the SSC-grass. The gongylidia structures observed by environmental scanning electron microscopy were ca. 40 µm and the hyphae width ca. 5 µm. The results show that L. gongylophorus from A. mexicana have promising applications for the treatment of plant residues to release fermentable sugars and the production of high value lignocellulolytic enzymes such as endoglucanase, xylanase or laccases.


Assuntos
Agaricales/crescimento & desenvolvimento , Formigas/microbiologia , Celulase/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Lignina/metabolismo , Agaricales/enzimologia , Agaricales/isolamento & purificação , Animais , Celulose/química , Cromatografia Gasosa , Fermentação , Proteínas Fúngicas/metabolismo , Regulação Enzimológica da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Microscopia Eletrônica de Varredura , Folhas de Planta/parasitologia
5.
Chemosphere ; 195: 427-436, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29274988

RESUMO

Fuel biodegradation linked to sulfate reduction can lead to corrosion of the metallic infrastructure in a variety of marine environments. However, the biological stability of emerging biofuels and their potential impact on copper-nickel alloys commonly used in marine systems has not been well documented. Two potential naval biofuels (Camelina-JP5 and Fisher-Tropsch-F76) and their petroleum-derived counterparts (JP5 and F76) were critically assessed in seawater/sediment incubations containing a metal coupon (70/30 Cu-Ni alloy). Relative to a fuel-unamended control (1.2 ±â€¯0.4 µM/d), Camelina-JP5 (86.4 ±â€¯1.6 µM/d) and JP5 (77.6 ±â€¯8.3 µM/d) stimulated much higher rates of sulfate reduction than either FT-F76 (11.4 ±â€¯2.7 µM/d) or F76 (38.4 ±â€¯3.7 µM/d). The general corrosion rate (r2 = 0.91) and pitting corrosion (r2 = 0.92) correlated with sulfate loss in these incubations. Despite differences in microbial community structure on the metal or in the aqueous or sediment phases, sulfate reducing bacteria affiliated with Desulfarculaceae and Desulfobacteraceae became predominant upon fuel amendment. The identification of alkylsuccinates and alkylbenzylsuccinates attested to anaerobic metabolism of fuel hydrocarbons. Sequences related to Desulfobulbaceae were highly enriched (34.2-64.8%) on the Cu-Ni metal surface, regardless of whether the incubation received a fuel amendment. These results demonstrate that the anaerobic metabolism of biofuel linked to sulfate reduction can exacerbate the corrosion of Cu-Ni alloys. Given the relative lability of Camelina-JP5, particular precaution should be taken when incorporating this hydroprocessed biofuel into marine environments serviced by a Cu-Ni metallic infrastructure.


Assuntos
Ligas/química , Biocombustíveis/microbiologia , Cobre/química , Níquel/química , Água do Mar/química , Anaerobiose , Biodegradação Ambiental , Corrosão , Hidrocarbonetos/metabolismo , Sulfatos/metabolismo
6.
Chemosphere ; 191: 809-816, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29145133

RESUMO

Foul odors comprise generally a complex mixture of molecules, where reduced sulfur compounds play a key role due to their toxicity and low odor threshold. Previous reports on treating mixtures of sulfur compounds in single biofilters showed that hydrogen sulfide (H2S) interferes with the removal and degradation of other sulfur compounds. In this study, hydrogen sulfide (H2S) and dimethyl disulfide (DMDS) were fed to an alkaline biotrickling filter (ABTF) at pH 10, to evaluate the simultaneous removal of inorganic and organic sulfur compounds in a single, basic-pH system. The H2S-DMDS mixture was treated for more than 200 days, with a gas residence time of 40 s, attaining elimination capacities of 86 gDMDS m-3 h-1 and 17 gH2S m-3 h-1 and removal efficiencies close to 100%. Conversion of H2S and DMDS to sulfate was generally above 70%. Consumption of sulfide and formaldehyde was verified by respirometry, suggesting the coexistence of both methylotrophic and chemoautotrophic breakdown pathways by the immobilized alkaliphilic biomass. The molecular biology analysis showed that the long-term acclimation of the ABTF led to a great variety of bacteria, predominated by Thioalkalivibrio species, while fungal community was notoriously less diverse and dominated by Fusarium species.


Assuntos
Dissulfetos/química , Sulfeto de Hidrogênio/química , Eliminação de Resíduos Líquidos/métodos , Bactérias/metabolismo , Reatores Biológicos , Dissulfetos/análise , Filtração , Sulfeto de Hidrogênio/análise , Sulfatos/metabolismo , Sulfetos/metabolismo , Compostos de Enxofre/metabolismo
7.
J Biotechnol ; 256: 68-75, 2017 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-28235610

RESUMO

Anaerobic hydrocarbon biodegradation not only diminishes fuel quality, but also exacerbates the biocorrosion of the metallic infrastructure. While successional events in marine microbial ecosystems impacted by petroleum are well documented, far less is known about the response of communities chronically exposed to hydrocarbons. Shipboard oily wastewater was used to assess the biotransformation of different diesel fuels and their propensity to impact carbon steel corrosion. When amended with sulfate and an F76 military diesel fuel, the sulfate removal rate in the assay mixtures was elevated (26.8µM/d) relative to incubations receiving a hydroprocessed biofuel (16.1µM/d) or a fuel-unamended control (17.8µM/d). Microbial community analysis revealed the predominance of Anaerolineae and Deltaproteobacteria in F76-amended incubations, in contrast to the Beta- and Gammaproteobacteria in the original wastewater. The dominant Smithella-like sequences suggested the potential for syntrophic hydrocarbon metabolism. The general corrosion rate was relatively low (0.83 - 1.29±0.12mpy) and independent of the particular fuel, but pitting corrosion was more pronounced in F76-amended incubations. Desulfovibrionaceae constituted 50-77% of the sessile organisms on carbon steel coupons. Thus, chronically exposed microflora in oily wastewater were differentially acclimated to the syntrophic metabolism of traditional hydrocarbons but tended to resist isoalkane-laden biofuels.


Assuntos
Gasolina , Aço/química , Águas Residuárias/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Carbono , Corrosão , DNA Bacteriano/análise , Hidrocarbonetos/metabolismo , RNA Ribossômico 16S/genética , Navios
8.
Bioresour Technol ; 226: 238-246, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28011238

RESUMO

A Rhodobacter capsulatus strain and a photoheterotrophic culture (IZT) were cultivated to produce hydrogen under different light-dark cycles. A dark fermentation effluent (DFE) was used as substrate. It was found that IZT culture had an average cumulative hydrogen production (Paccum H2) of 1300±43mLH2L-1 under continuous illumination and light-dark cycles of 30 or 60min. In contrast, R. capsulatus reduced its Paccum H2 by 20% under 30:30min light-dark cycles, but tripled its poly-ß-hydroxybutyrate (PHB) content (308±2mgPHB gdw-1) compared to continuous illumination. The highest PHB content by IZT culture was 178±10mgPHB gdw-1 under 15:15min light-dark cycles. PCR-DGGE analysis revealed that the IZT culture was mainly composed of Rhodopseudomonas palustris identified with high nucleotide similarity (99%). The evaluated cultures might be used for hydrogen and PHB production. They might provide energy savings by using light-dark cycles and DFE valorization.


Assuntos
Hidroxibutiratos/química , Poliésteres/química , Rhodobacter capsulatus/metabolismo , Análise da Demanda Biológica de Oxigênio , DNA/química , Eletroforese em Gel de Gradiente Desnaturante , Fermentação , Hidrogênio/química , Cinética , Luz , Nucleotídeos/química , Fotoperíodo , Poliésteres/metabolismo , Rodopseudomonas/metabolismo
9.
Appl Microbiol Biotechnol ; 100(24): 10637-10647, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27722915

RESUMO

The operation and performance of a biotrickling filter for methanol (MeOH) and hydrogen sulfide (H2S) removal at acid pH was studied. Excess biomass in the filter bed, causing performance loss and high pressure drop, was controlled by intermittent addition, of ozone (O3) and hydrogen peroxide (H2O2). The results showed that after adaptation to acid pH, the maximum elimination capacity (EC) reached for MeOH was 565 g m-3 h -1 (97 % RE). High MeOH loads resulted in increased biomass concentration within the support, triggering reductions in the removal efficiency (RE) for both compounds close to 50 %, and high pressure drop. At this stage, an inlet load of 150.2 ± 16.7 g m-3 h-1 of O3 was fed by 38 days favoring biomass detachment, and EC recovery and lower pressure dropped with a maximum elimination capacity of 587 g m-3 h-1 (81 % RE) and 15.8 g m-3 h-1 (97 % RE) for MeOH and H2S, respectively. After O3 addition, a rapid increase in biomass content and higher fluctuations in pressure drop were observed reducing the system performance. A second treatment with oxidants was implemented feeding a O3 load of 4.8 ± 0.1 g m-3 h-1 for 7 days, followed by H2O2 addition for 23 days, registering 607.5 gbiomass L-1packing before and 367.5 gbiomass L-1packing after the oxidant addition. PCR-DGGE analysis of different operating stages showed a clear change in the bacterial populations when O3 was present while the fungal population was less affected.


Assuntos
Poluentes Atmosféricos/metabolismo , Anti-Infecciosos/metabolismo , Filtração/métodos , Peróxido de Hidrogênio/metabolismo , Sulfeto de Hidrogênio/metabolismo , Metanol/metabolismo , Ozônio/metabolismo , Biomassa , Microbiologia Ambiental
10.
Biotechnol Lett ; 37(4): 807-14, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25432418

RESUMO

Pseudomonas citronellolis UAM-Ps1 co-metabolically transforms methyl tert-butyl ether (MTBE) to tert-butyl alcohol with n-pentane (2.6 mM), n-octane (1.5 mM) or dicyclopropylketone (DCPK) (4.4 mM), a gratuitous inducer of alkane hydroxylase (AlkB) activity. The reverse transcription quantitative real-time PCR was used to quantify the alkane monooxygenase (alkB) gene expression. The alkB gene was expressed in the presence of n-alkanes and DCPK and MTBE oxidation occurred only in cultures when alkB was transcribed. A correlation between the number of alkB transcripts and MTBE consumption was found (ΜΤΒΕ consumption in µmol = 1.44e(-13) x DNA copies, R(2) = 0.99) when MTBE (0.84 mM) was added. Furthermore, alkB was cloned and expressed into Escherichia coli and the recombinant AlkB had a molecular weight of 42 kDa. This is the first report where the expression of alkB is related to the co-metabolic oxidation of MTBE.


Assuntos
Éteres Metílicos/metabolismo , Oxigenases de Função Mista/metabolismo , Pseudomonas/metabolismo , terc-Butil Álcool/metabolismo , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Oxigenases de Função Mista/genética , Peso Molecular , Oxirredução , Pseudomonas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação
11.
Biofouling ; 30(5): 547-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24689777

RESUMO

Heterotrophic CaCO3-precipitating bacteria were isolated from biofilms on deteriorated ignimbrites, siliceous acidic rocks, from Morelia Cathedral (Mexico) and identified as Enterobacter cancerogenus (22e), Bacillus sp. (32a) and Bacillus subtilis (52g). In solid medium, 22e and 32a precipitated calcite and vaterite while 52g produced calcite. Urease activity was detected in these isolates and CaCO3 precipitation increased in the presence of urea in the liquid medium. In the presence of calcium, EPS production decreased in 22e and 32a and increased in 52g. Under laboratory conditions, ignimbrite colonization by these isolates only occurred in the presence of calcium and no CaCO3 was precipitated. Calcium may therefore be important for biofilm formation on stones. The importance of the type of stone, here a siliceous stone, on biological colonization is emphasized. This calcium effect has not been reported on calcareous materials. The importance of the effect of calcium on EPS production and biofilm formation is discussed in relation to other applications of CaCO3 precipitation by bacteria.


Assuntos
Bacillus/fisiologia , Biofilmes , Carbonato de Cálcio/metabolismo , Enterobacter/fisiologia , Bacillus/genética , Bacillus/isolamento & purificação , Carbonato de Cálcio/química , Precipitação Química , Enterobacter/genética , Enterobacter/isolamento & purificação , Processos Heterotróficos , México , Dados de Sequência Molecular , Filogenia , Propriedades de Superfície
12.
Biotechnol J ; 9(6): 791-9, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24677798

RESUMO

Overflow metabolism is a prevalent problem for aerobic cultivations of Escherichia coli. Although several process and molecular approaches have been applied to prevent overflow metabolism, these approaches often result in reductions in growth rate, biomass yield or accumulation of other byproducts. In this report, we present an alternative approach based on increasing the efficiency of aerobic metabolism by the expression of the Vitreoscilla stercoraria hemoglobin (VHb) to avoid overflow metabolism. VHb is expected to increase the consumption of NADH in the respiratory chain, leading to increased activity of the tricarboxylic acid (TCA) cycle. This would result in a faster consumption of acetyl Co-A and a decrease in acetate production. When this strategy was tested in E. coli strains, acetate production decreased by 50% in MG1655 and more than 90% in W3110, without affecting growth rates or biomass yields. VHb expression in mutant strains with higher TCA activity and reduced acetate formation resulted in a significant increase in growth and glucose consumption rates, whereas acetate production did not increase. The results presented here show that enhancing the efficiency of aerobic metabolism is a valuable approach to avoid overflow metabolism in E. coli and to attain high cell densities in batch mode.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/genética , Hemoglobinas Truncadas/metabolismo , Acetatos/metabolismo , Aerobiose , Reatores Biológicos , Ciclo do Ácido Cítrico , Meios de Cultura/química , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo
13.
Biodegradation ; 24(2): 215-25, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22847399

RESUMO

Stimulation of native microbial populations in soil by the addition of small amounts of secondary carbon sources (cosubstrates) and its effect on the degradation and theoretical mineralization of DDT [l,l,l-trichloro-2,2-bis(p-chlorophenyl)ethane] and its main metabolites, DDD and DDE, were evaluated. Microbial activity in soil polluted with DDT, DDE and DDD was increased by the presence of phenol, hexane and toluene as cosubstrates. The consumption of DDT was increased from 23 % in a control (without cosubstrate) to 67, 59 and 56 % in the presence of phenol, hexane and toluene, respectively. DDE was completely removed in all cases, and DDD removal was enhanced from 67 % in the control to ~86 % with all substrates tested, except for acetic acid and glucose substrates. In the latter cases, DDD removal was either inhibited or unchanged from the control. The optimal amount of added cosubstrate was observed to be between 0.64 and 2.6 mg C [Formula: see text]. The CO2 produced was higher than the theoretical amount for complete cosubstrate mineralization indicating possible mineralization of DDT and its metabolites. Bacterial communities were evaluated by denaturing gradient gel electrophoresis, which indicated that native soil and the untreated control presented a low bacterial diversity. The detected bacteria were related to soil microorganisms and microorganisms with known biodegradative potential. In the presence of toluene a bacterium related to Azoarcus, a genus that includes species capable of growing at the expense of aromatic compounds such as toluene and halobenzoates under denitrifying conditions, was detected.


Assuntos
Biodegradação Ambiental , DDT/metabolismo , Diclorodifenil Dicloroetileno/metabolismo , Hidrocarbonetos Clorados/metabolismo , Microbiologia do Solo
14.
Appl Microbiol Biotechnol ; 94(1): 163-71, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22173483

RESUMO

Benzohydroxamic acids, such as 4-hydroxy-(2H)-1,4-benzoxazin-3(4H)-one (D-DIBOA), exhibit interesting herbicidal, fungicidal and bactericidal properties. Recently, the chemical synthesis of D-DIBOA has been simplified to only two steps. In a previous paper, we demonstrated that the second step could be replaced by a biotransformation using Escherichia coli to reduce the nitro group of the precursor, ethyl 2-(2'-nitrophenoxy)acetate and obtain D-DIBOA. The NfsA and NfsB nitroreductases and the NemA xenobiotic reductase of E. coli have the capacity to reduce one or two nitro groups from a wide variety of nitroaromatic compounds, which are similar to the precursor. By this reason, we hypothesised that these three enzymes could be involved in this biotransformation. We have analysed the biotransformation yield (BY) of mutant strains in which one, two or three of these genes were knocked out, showing that only in the double nfsA/nfsB and in the triple nfsA/nfsB/nemA mutants, the BY was 0%. These results suggested that NfsA and NfsB are responsible for the biotransformation in the tested conditions. To confirm this, the nfsA and nfsB open reading frames were cloned into the pBAD expression vector and transformed into the nfsA and nfsB single mutants, respectively. In both cases, the biotransformation capacity of the strains was recovered (6.09 ± 0.06% as in the wild-type strain) and incremented considerably when NfsA and NfsB were overexpressed (40.33% ± 9.42% and 59.68% ± 2.0% respectively).


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , FMN Redutase/metabolismo , Ácidos Hidroxâmicos/metabolismo , Nitrorredutases/metabolismo , Biotransformação , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , FMN Redutase/genética , Nitrorredutases/genética
15.
J Biotechnol ; 158(4): 211-4, 2012 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-21718724

RESUMO

Escherichia coli strains VH33 (PTS⁻ GalP⁺ strain displaying a strongly reduced overflow metabolism) and VH34 (additionally lacking the pyruvate kinase A) were evaluated for the production of a plasmid DNA (pDNA) vaccine. The parent (W3110) and mutant strains were cultured using 10 g of glucose/L. While the specific growth rates of the three strains were similar, they presented differences in the accumulation of acetate. W3110 accumulated up to 4 g/L of acetate, VH33 produced 1.4 g/L, and VH34 only 0.78 g/L. VH33 and VH34 produced 76% and 300% more pDNA than W3110. Moreover, VH34 demanded 33% less oxygen than VH33 and W3110, which can be advantageous for large-scale applications.


Assuntos
Bioengenharia/métodos , DNA/genética , DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Plasmídeos/genética , Plasmídeos/metabolismo , Acetatos/metabolismo , Mutação
16.
Methods Mol Biol ; 824: 451-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22160914

RESUMO

Genetic engineering has been successfully applied to Saccharomyces cerevisiae laboratory strains for different purposes: extension of substrate range, improvement of productivity and yield, elimination of by-products, improvement of process performance and cellular properties, and extension of product range. The potential of genetically engineered yeasts for the massive production of biofuels as bioethanol and other nonfuel products from renewable resources as lignocellulosic biomass hydrolysates has been recognized. For such applications, robust industrial strains of S. cerevisiae have to be used. Here, some relevant genetic and genomic characteristics of industrial strains are discussed in relation to the problematic of the genetic engineering of such strains. General molecular tools applicable to the manipulation of S. cerevisiae industrial strains are presented and examples of genetically engineered industrial strains developed for the production of bioethanol from lignocellulosic biomass are given.


Assuntos
Biocombustíveis , Etanol , Engenharia Genética/métodos , Genoma Fúngico/genética , Microbiologia Industrial/métodos , Saccharomyces cerevisiae/genética , Rearranjo Gênico/genética , Saccharomyces cerevisiae/fisiologia , Especificidade da Espécie , Estresse Fisiológico/fisiologia
17.
Biotechnol J ; 6(8): 993-1002, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21744499

RESUMO

High cell-density cultivations are the preferred system for biomolecules production by Escherichia coli. It has been previously demonstrated that a strain of E. coli with a modified substrate transport system is able to attain high cell densities in batch mode, due to the very low overflow metabolism displayed. The use of elevated amounts of glucose from the beginning of the cultivation, eliminates the existence of substrate gradients due to deficient mixing at large-scale. However, the large amounts of oxygen demanded resulted in microaerobic conditions after some hours of cultivation, even at small-scale. In this work, the effect of expressing the Vitreoscilla hemoglobin (VHb) in the engineered strain during batch cultures using high-glucose concentrations was tested. Together, the expression of VHb and the modified substrate transport system resulted in a 33% increase of biomass production compared to the parental strain (W3110) lacking the VHb in batch cultivations using 25 g/L of glucose. When 50 g/L of glucose were used, expression of VHb in the modified strain led to 11% higher biomass production compared to W3110. The VHb also increased the growth rates of the strains by about 30% in the aerobic phase and more than 200% in the microaerobic phase of batch cultivation.


Assuntos
Proteínas de Bactérias/biossíntese , Escherichia coli/metabolismo , Glucose/metabolismo , Microbiologia Industrial , Organismos Geneticamente Modificados/metabolismo , Hemoglobinas Truncadas/biossíntese , Bactérias Aeróbias/metabolismo , Proteínas de Bactérias/genética , Técnicas de Cultura Celular por Lotes , Reatores Biológicos , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Oxigênio/química , Oxigênio/metabolismo , Hemoglobinas Truncadas/genética
18.
Bioresour Technol ; 102(5): 4047-53, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21216139

RESUMO

The present work aims to use a two-stage biotrickling filters for simultaneous treatment of hydrogen sulphide (H(2)S), methyl mercaptan (MM), dimethyl sulphide (DMS) and dimethyl disulphide (DMDS). The first biofilter was inoculated with Acidithiobacillus thiooxidans (BAT) and the second one with Thiobacillus thioparus (BTT). For separate feeds of reduced sulphur compounds (RSC), the elimination capacity (EC) order was DMDS>DMS>MM. The EC values were 9.8 g(MM-S)/m(3)/h (BTT; 78% removal efficiency (RE); empty bed residence time (EBRT) 58 s), 36 g(DMDS-S)/m(3)/h (BTT; 94.4% RE; EBRT 76 s) and 57.5 g(H2S-S)/m(3)/h (BAT; 92% RE; EBRT 59 s). For the simultaneous removal of RSC in BTT, an increase in the H(2)S concentration from 23 to 293 ppmv (EBRT of 59 s) inhibited the RE of DMS (97-84% RE), DMDS (86-76% RE) and MM (83-67% RE). In the two-stage biofiltration, the RE did not decrease on increasing the H(2)S concentration from 75 to 432 ppmv.


Assuntos
Acidithiobacillus thiooxidans/metabolismo , Filtração/métodos , Compostos de Enxofre/isolamento & purificação , Thiobacillus/metabolismo , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos , Cromatografia Gasosa , Filtração/instrumentação , Compostos de Enxofre/metabolismo
19.
J Mol Microbiol Biotechnol ; 15(2-3): 74-92, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18685264

RESUMO

Hypersaline environments are important for both surface extension and ecological significance. As all other ecosystems, they are impacted by pollution. However, little information is available on the biodegradation of organic pollutants by halophilic microorganisms in such environments. In addition, it is estimated that 5% of industrial effluents are saline and hypersaline. Conventional nonextremophilic microorganisms are unable to efficiently perform the removal of organic pollutants at high salt concentrations. Halophilic microorganisms are metabolically different and are adapted to extreme salinity; these microorganisms are good candidates for the bioremediation of hypersaline environments and treatment of saline effluents. This literature survey indicates that both the moderately halophilic bacteria and the extremely halophilic archaea have a broader catabolic versatility and capability than previously thought. A diversity of contaminating compounds is susceptible to be degraded by halotolerant and halophile bacteria. Nevertheless, significant research efforts are still necessary in order to estimate the true potential of these microorganisms to be applied in environmental processes and in the remediation of contaminated hypersaline ecosystems. This effort should be also focused on basic research to understand the overall degradation mechanism, to identify the enzymes involved in the degradation process and the metabolism regulation.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Biodegradação Ambiental , Poluentes Ambientais/metabolismo , Cloreto de Sódio/metabolismo , Poluição Ambiental , Compostos Orgânicos/metabolismo , Microbiologia do Solo
20.
Biotechnol Lett ; 30(1): 173-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17876536

RESUMO

The catalytic potential of chloroperoxidase (CPO) immobilized on mesoporous materials was evaluated for the oxidation of 4,6-dimethyldibenzothiophene in water/acetonitrile mixtures. Two different types of materials were used for the immobilization: a metal containing Al-MCM-41 material with a pore size of 26 A and SBA-16 materials with three different pore sizes: 40, 90 and 117 A. The SBA-16 40 A did not retain any CPO. The nature and the pore size of the material affected the catalytic activity of the enzyme as well as its stability. Compared to the free enzyme, the thermal stability of CPO at 45 degrees C was two and three times higher than when immobilized on Al-MCM-41 and SBA-16 90 A, respectively.


Assuntos
Ascomicetos/enzimologia , Cloreto Peroxidase/química , Tiofenos/química , Ativação Enzimática , Enzimas Imobilizadas/química , Compostos Orgânicos/química , Oxirredução , Porosidade , Compostos de Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA