Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 929: 172186, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38599393

RESUMO

Nature-based solutions (NbS) offer a promising and sustainable approach to addressing multiple environmental challenges, including climate change, pollution, and biodiversity loss. Despite the potential of NbS, their actual effectiveness in solving these challenges remains uncertain. Therefore, this study evaluates the contribution of NbS implemented in a nature-inclusive scenario for six environmental challenges and associated policy targets in the Netherlands. Fifteen different NbS were applied in the scenario in urban, agricultural, aquatic, and protected nature areas, with measures like flower field margins, green roofs, groundwater level management, and river restoration. The spatially-explicit Natural Capital Model was used to quantify the effectiveness of all applied NbS at a national-scale. Results show NbS significantly contribute to simultaneously solving all six assessed environmental challenges. The most significant impact was seen in improving the quality of water bodies (+34 %), making agriculture more sustainable (+24 %), and protecting and restoring biodiversity (+22 %). The contribution of NbS to address the quality of the living environment (+13 %), climate change (+10 %), and the energy transition was less effective (+2 %). Furthermore, NbS can help to achieve sectoral policy targets at the global, EU, and national levels, including those related to the Birds Habitats Directives, carbon emission, and pesticide reduction targets. This study highlights the potential of NbS to effectively address multiple environmental challenges, although they do not provide a complete solution, and suggests that future research could focus on identifying even more effective ways to implement NbS, and to mainstream their use in policy and practice.

2.
Sci Rep ; 12(1): 4194, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264720

RESUMO

Grasslands cover a major share of the world's agricultural land and their management influences ecosystem services. Spatially targeted policy instruments can increase the provision of ecosystem services by exploiting how they respond to spatial differences in environmental characteristics such as altitude, slope, or soil quality. However, most policy instruments focus on individual farms, where spatial differences are small. Here we assess the economic value of three grassland ecosystem services (i.e., forage provision, carbon sequestration, and habitat maintenance) and its variability in a Swiss region of 791 km2 that consists of 19,000 farmland parcels when managed at the regional and farm scale, respectively. Our spatially explicit bio-economic simulation approach combines biophysical information on grassland ecosystem services and their economic values. We find that in our case study region, spatial targeting on a regional scale management increases the economic value of ecosystem services by 45% compared to targeting at farm scale. We also find that the heterogeneity of economic values coming from prices and willingness to pay estimates is higher than the economic gains from spatial targeting that make use of the spatial difference in environmental characteristics. This implies that heterogeneity in prices and/or societal demand of these three ecosystem services is more important for grassland management than spatial heterogeneity in our case study region. The here applied framework allows for an ex-ante assessment of economic gains from spatial targeting and thus provides basic information for the implementation of incentive mechanisms addressing the nexus of food production and ecosystem service provision in grasslands.


Assuntos
Ecossistema , Pradaria , Agricultura , Conservação dos Recursos Naturais , Fazendas , Solo
3.
J Environ Manage ; 251: 109372, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550606

RESUMO

Grasslands provide multiple Ecosystem Services (ES) such as forage provision, carbon sequestration or habitat provision. Knowledge about the trade-offs between these ES is of great importance for grassland management. Yet, the outcome of different management strategies on ES provision is highly uncertain due to spatial variability. We aim to characterize the provision (level and spatial variability) of grassland ES under various management strategies. To do so, we combine empirical data for multiple ES with spatially explicit census data on land use intensities. We analyzed the variations of five ES (forage provision, climate regulation, pollination, biodiversity conservation and outdoor recreation) using data from biodiversity fieldwork, experimental plots for carbon as well as social network data from Flickr. These data were used to calculate the distribution of modelled individual and multiple ES values from different grassland management types in a Swiss case study region using spatial explicit information for 17,383 grassland parcels. Our results show that (1) management regime and intensity levels play an important role in ES provision but their impact depends on the ES. In general, extensive management, especially in pastures, favors all ES but forage provision, whereas intensive management favors only forage provision and outdoor recreation; (2) ES potential provision varies between parcels under the same management due to the influence of environmental drivers, related to topography and landscape structure; (3) there is a trade-offs between forage provision and other ES at the cantonal level but a synergy between forage provision and biodiversity conservation within the grassland categories, due to the negative impact of elevation on both ES. Information about multiple ES provision is key to support effective agri-environmental measures and information about the spatial variability can prevent uncertain outputs of decision-making processes.


Assuntos
Ecossistema , Pradaria , Agricultura , Biodiversidade , Conservação dos Recursos Naturais
4.
Conserv Biol ; 32(6): 1380-1391, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30113727

RESUMO

Assessing how much management of agricultural landscapes, in addition to protected areas, can offset biodiversity erosion in the tropics is a central issue for conservation that still requires cross-taxonomic and landscape-scale studies. We measured the effects of Amazonia deforestation and subsequent land-use intensification in 6 agricultural areas (landscape scale), where we sampled plants and 4 animal groups (birds, earthworms, fruit flies, and moths). We assessed land-use intensification with a synthetic index based on landscape metrics (total area and relative percentages of land uses, edge density, mean patch density and diversity, and fractal structures at 5 dates from 1990 to 2007). Species richness decreased consistently as agricultural intensification increased despite slight differences in the responses of sampled groups. Globally, in moderately deforested landscapes species richness was relatively stable, and there was a clear threshold in biodiversity loss midway along the intensification gradient, mainly linked to a drop in forest cover and quality. Our results suggest anthropogenic landscapes with high-quality forest covering >40 % of the surface area may prevent biodiversity loss in Amazonia.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Agricultura , Animais , Brasil , Florestas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA