Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Soins ; 69(884): 46-49, 2024 Apr.
Artigo em Francês | MEDLINE | ID: mdl-38614520

RESUMO

Adapted physical activity (APA) is one of the pillars of prehabilitation. The creation and personalization of an APA program is based on an assessment carried out by the APA teacher, who identifies the patient's obstacles and levers. The aim of this personalized program assessment is to support the person being cared for in adopting a more active and less sedentary lifestyle, and to ensure that these changes have a positive impact on their health. Relying on resources in the city and on the patient's caregivers are all ways of reinforcing the patient's adherence to APA.


Assuntos
Exercício Físico , Comportamento Sedentário , Humanos
2.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255955

RESUMO

Obesity affects nearly 660 million adults worldwide and is known for its many comorbidities. Although the phenomenon of obesity is not fully understood, science regularly reveals new determinants of this pathology. Among them, persistent organic pollutants (POPs) have been recently highlighted. Mainly lipophilic, POPs are normally stored in adipose tissue and can lead to adverse metabolic effects when released into the bloodstream. The main objective of this narrative review is to discuss the different pathways by which physical activity may counteract POPs' adverse effects. The research that we carried out seems to indicate that physical activity could positively influence several pathways negatively influenced by POPs, such as insulin resistance, inflammation, lipid accumulation, adipogenesis, and gut microbiota dysbiosis, that are associated with the development of obesity. This review also indicates how, through the controlled mobilization of POPs, physical activity could be a valuable approach to reduce the concentration of POPs in the bloodstream. These findings suggest that physical activity should be used to counteract the adverse effects of POPs. However, future studies should accurately assess its impact in specific situations such as bariatric surgery, where weight loss promotes POPs' blood release.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Poluentes Ambientais , Adulto , Humanos , Poluentes Orgânicos Persistentes , Obesidade/etiologia , Poluentes Ambientais/toxicidade , Exercício Físico
3.
Metabolites ; 13(3)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36984770

RESUMO

In recent years, various physical exercise interventions have been developed with a view to reducing comorbidity and morbidity rates among patients with chronic diseases. Regular physical exercise has been shown to reduce hypertension and mortality in patients with type 2 diabetes. Diabetes and obesity are often associated with the development of nonalcoholic fatty liver disease, which can lead to liver fibrosis and then (in some cases) nonalcoholic steatohepatitis cirrhosis. We searched the literature for publications on personalized physical exercise programs in cirrhotic patients before and after liver transplantation. Eleven studies in cirrhotic patients and one study in liver transplant recipients were included in the systematic review, the results of which were reported in compliance with the preferred reporting items for systematic reviews and meta-analyses guidelines. The personalized physical exercise programs lasted for 6 to 16 weeks. Our review evidenced improvements in peak oxygen consumption and six-minute walk test performance and a reduction in the hepatic venous pressure gradient. In cirrhotic patients, personalized physical exercise programs improve quality of life, are not associated with adverse effects, and (for transplant recipients) might reduce the 90-day hospital readmission rate. However, none of the literature data evidenced reductions in the mortality rates before and after transplantation. Further prospective studies are needed to evaluate the benefit of long-term physical exercise programs in cirrhotic patients before and after liver transplantation.

4.
Biomedicines ; 9(12)2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944730

RESUMO

Metabolic-associated fatty liver disease (MAFLD), previously called nonalcoholic fatty liver diseases (NAFLD), is one of the most important causes of chronic liver disease worldwide and will likely become the leading cause of end-stage liver disease in the decades ahead. MAFLD covers a continuum of liver diseases from fatty liver to nonalcoholic steatohepatitis (NASH), liver fibrosis/cirrhosis and hepatocellular cancer. Importantly, the growing incidence of overweight and obesity in childhood, 4% in 1975 to 18% in 2016, with persisting obesity complications into adulthood, is likely to be harmful by increasing the incidence of severe MAFLD at an earlier age. Currently, MAFLD is the leading form of chronic liver disease in children and adolescents, with a global prevalence of 3 to 10%, pointing out that early diagnosis is therefore crucial. In this review, we highlight the current knowledge concerning the epidemiology, risk factors and potential pathogenic mechanisms, as well as diagnostic and therapeutic approaches, of pediatric MAFLD.

5.
Int J Mol Sci ; 22(21)2021 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-34768927

RESUMO

Synthetic ligands of peroxisome-proliferator-activated receptor beta/delta (PPARß/δ) are being used as performance-enhancing drugs by athletes. Since we previously showed that PPARß/δ activation affects T cell biology, we wanted to investigate whether a specific blood T cell signature could be employed as a method to detect the use of PPARß/δ agonists. We analyzed in primary human T cells the in vitro effect of PPARß/δ activation on fatty acid oxidation (FAO) and on their differentiation into regulatory T cells (Tregs). Furthermore, we conducted studies in mice assigned to groups according to an 8-week exercise training program and/or a 6-week treatment with 3 mg/kg/day of GW0742, a PPARß/δ agonist, in order to (1) determine the immune impact of the treatment on secondary lymphoid organs and to (2) validate a blood signature. Our results show that PPARß/δ activation increases FAO potential in human and mouse T cells and mouse secondary lymphoid organs. This was accompanied by increased Treg polarization of human primary T cells. Moreover, Treg prevalence in mouse lymph nodes was increased when PPARß/δ activation was combined with exercise training. Lastly, PPARß/δ activation increased FAO potential in mouse blood T cells. Unfortunately, this signature was masked by training in mice. In conclusion, beyond the fact that it is unlikely that this signature could be used as a doping-control strategy, our results suggest that the use of PPARß/δ agonists could have potential detrimental immune effects that may not be detectable in blood samples.


Assuntos
Exercício Físico/fisiologia , Ácidos Graxos/metabolismo , PPAR delta/agonistas , PPAR beta/agonistas , Detecção do Abuso de Substâncias/métodos , Linfócitos T Reguladores/imunologia , Animais , Células Cultivadas , Humanos , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução/efeitos dos fármacos , PPAR delta/farmacologia , PPAR beta/farmacologia , Substâncias para Melhoria do Desempenho/farmacologia , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/efeitos dos fármacos , Tiazóis/farmacologia
6.
Front Physiol ; 12: 587753, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815130

RESUMO

Anti-inflammatory regulatory T cells (Tregs) are the most metabolically flexible CD4+ T cells by using both glycolysis and fatty acid oxidation (FAO) which allow them to migrate in tissues. With aging, Tregs accumulate in secondary lymphoid organs and are involved in impairment of skeletal muscle (SKM) regeneration and mass maintenance. In this study, we showed that a deletion of a FAO modulator, peroxisome proliferator-activated receptor beta/delta (PPARß/δ), specifically in T cells (KO-T PPARß/δ), increased the number of CD4+ T cells at day 2 following a cardiotoxin-induced SKM regeneration. Older KO-T PPARß/δ mice maintained a Tregs prevalence in lymph nodes similar to young mice. Surprisingly, KO-T PPARß/δ mice were protected from the effects of age on lean and fat mass and endurance capacity. Our results lead us to propose an original potential role of T cell metabolism in the effects of aging on the maintenance of body composition and endurance capacity.

7.
FASEB J ; 35(4): e21312, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33742689

RESUMO

The decrease in the regulatory T cells (Tregs) population is highly involved in adipose tissue inflammation and insulin resistance in obesity. Tregs depend on fatty acids via ß-oxidation for immunosuppressive function adapting their antioxidant systems to allow survival to oxidative stress. In this study, we have hypothesized that a dietary supplementation with alpha-lipoic acid (ALA), a powerful antioxidant, would improve immunometabolism when added to the classical strategy of obesity treatment. First, we showed by in vitro experiments that ALA favors the polarization of mice CD4 + T cells toward Tregs. Next, we have carried out a translational study where female obese mice and women were supplemented with ALA or vehicle/placebo (mice: 2.5 gALA /kgfood ; 6 weeks; women: 600 mgALA /day, 8 weeks) while following a protocol including regular exercise and a change in diet. Fatty acid oxidation potential and activity of nuclear erythroid-related factor 2 (NRF2) of mouse secondary lymphoid tissues were improved by ALA supplementation. ALA reduced visceral adipose tissue (VAT) mass and preserved Tregs in VAT in mice. In women, ALA supplementation induced significant metabolic changes of circulating CD4 + T cells including increased oxidative capacity and fatty acid oxidation, ameliorated their redox status, and improved the reduction of visceral fat mass. While appropriate biological markers are still required to be used in clinics to judge the effectiveness of long-term obesity treatment, further studies in female mice and women are needed to determine whether these immunometabolic changes would reduce VAT mass-associated risk for secondary health issues arising from obesity.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Suplementos Nutricionais , Exercício Físico , Obesidade/terapia , Condicionamento Físico Animal , Ácido Tióctico/farmacologia , Idoso , Animais , Composição Corporal , Linfócitos T CD4-Positivos , Metabolismo Energético/imunologia , Feminino , Teste de Tolerância a Glucose , Humanos , Peroxidação de Lipídeos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Palmitatos/metabolismo , Distribuição Aleatória , Ácido Tióctico/administração & dosagem
8.
Int J Mol Sci ; 20(20)2019 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-31635041

RESUMO

Regular aerobic exercise, independently of weight loss, improves metabolic and anti-inflammatory states, and can be regarded as beneficial in counteracting obesity-induced low-grade inflammation. However, it is still unknown how exercise alters immunometabolism in a context of dietary changes. Agonists of the Peroxisome Proliferator Activated-Receptor beta/delta (PPARß/δ) have been studied this last decade as "exercise-mimetics", which are potential therapies for metabolic diseases. In this study, we address the question of whether PPARß/δ agonist treatment would improve the immunometabolic changes induced by exercise in diet-induced obese female mice, having switched from a high fat diet to a normal diet. 24 mice were assigned to groups according to an 8-week exercise training program and/or an 8-week treatment with 3 mg/kg/day of GW0742, a PPARß/δ agonist. Our results show metabolic changes of peripheral lymphoid tissues with PPARß/δ agonist (increase in fatty acid oxidation gene expression) or exercise (increase in AMPK activity) and a potentiating effect of the combination of both on the percentage of anti-inflammatory Foxp3+ T cells. Those effects are associated with a decreased visceral adipose tissue mass and skeletal muscle inflammation (TNF-α, Il-6, Il-1ß mRNA level), an increase in skeletal muscle oxidative capacities (citrate synthase activity, endurance capacity), and insulin sensitivity. We conclude that a therapeutic approach targeting the PPARß/δ pathway would improve obesity treatment.


Assuntos
Dieta Hiperlipídica , Metabolismo Energético , Obesidade/metabolismo , PPAR delta/agonistas , PPAR beta/agonistas , Condicionamento Físico Animal , Redução de Peso , Animais , Metabolismo Energético/efeitos dos fármacos , Feminino , Glucose/metabolismo , Resistência à Insulina , Metabolismo dos Lipídeos , Contagem de Linfócitos , Camundongos , Camundongos Obesos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Obesidade/etiologia , Obesidade/terapia , PPAR delta/metabolismo , PPAR beta/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA