Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 286(1896): 20182019, 2019 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-30963928

RESUMO

Social networks are the result of interactions between individuals at different temporal scales. Thus, sporadic intergroup encounters and individual forays play a central role in defining the dynamics of populations in social species. We assessed the rate of intergroup encounters for three western lowland gorilla ( Gorilla gorilla gorilla) groups with daily observations over 5 years, and non-invasively genotyped a larger population over four months. Both approaches revealed a social system much more dynamic than anticipated, with non-aggressive intergroup encounters that involved social play by immature individuals, exchanges of members between groups likely modulated by kinship, and absence of infanticide evidenced by infants not fathered by the silverback of the group where they were found. This resulted in a community composed of groups that interacted frequently and not-aggressively, contrasting with the more fragmented and aggressive mountain gorilla ( G. beringei beringei) societies. Such extended sociality can promote the sharing of behavioural and cultural traits, but might also increase the susceptibility of western lowland gorillas to infectious diseases that have decimated their populations in recent times.


Assuntos
Gorilla gorilla/psicologia , Comportamento Social , Animais , Congo , Feminino , Masculino
2.
Oecologia ; 166(2): 369-79, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21153739

RESUMO

The little owl (Athene noctua) has declined significantly in many parts of Europe, including the Netherlands. To understand the demographic mechanisms underlying their decline, we analysed all available Dutch little owl ringing data. The data set spanned 35 years, and included more than 24,000 ringed owls, allowing detailed estimation of survival rates through multi-state capture-recapture modelling taking dispersal into account. We investigated geographical and temporal variation in age-specific survival rates and linked annual survival estimates to population growth rate in corresponding years, as well as to environmental covariates. The best model for estimating survival assumed time effects on both juvenile and adult survival rates, with average annual survival estimated at 0.258 (SE = 0.047) and 0.753 (SE = 0.019), respectively. Juvenile survival rates decreased with time whereas adult survival rates fluctuated regularly among years, low survival occurring about every 4 years. Years when the population declined were associated with low juvenile survival. More than 60% of the variation in juvenile survival was explained by the increase in road traffic intensity or in average temperature in spring, but these correlations rather reflect a gradual decrease in juvenile survival coinciding with long-term global change than direct causal effects. Surprisingly, vole dynamics did not explain the cyclic dynamics of adult survival rate. Instead, dry and cold years led to low adult survival rates. Low juvenile survival rates, that limit recruitment of first-year breeders, and the regular occurrence of years with poor adult survival, were the most important determinants of the population decline of the little owl.


Assuntos
Estrigiformes/fisiologia , Animais , Conservação dos Recursos Naturais , Ecossistema , Espécies em Perigo de Extinção , Modelos Biológicos , Países Baixos , Densidade Demográfica , Dinâmica Populacional
3.
PLoS One ; 4(12): e8375, 2009 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-20020045

RESUMO

BACKGROUND: Emerging infectious diseases in wildlife are major threats for both human health and biodiversity conservation. Infectious diseases can have serious consequences for the genetic diversity of populations, which could enhance the species' extinction probability. The Ebola epizootic in western and central Africa induced more than 90% mortality in Western lowland gorilla population. Although mortality rates are very high, the impacts of Ebola on genetic diversity of Western lowland gorilla have never been assessed. METHODOLOGY/PRINCIPAL FINDINGS: We carried out long term studies of three populations of Western lowland gorilla in the Republic of the Congo (Odzala-Kokoua National Park, Lossi gorilla sanctuary both affected by Ebola and Lossi's periphery not affected). Using 17 microsatellite loci, we compared genetic diversity and structure of the populations and estimate their effective size before and after Ebola outbreaks. Despite the effective size decline in both populations, we did not detect loss in genetic diversity after the epizootic. We revealed temporal changes in allele frequencies in the smallest population. CONCLUSIONS/SIGNIFICANCE: Immigration and short time elapsed since outbreaks could explain the conservation of genetic diversity after the demographic crash. Temporal changes in allele frequencies could not be explained by genetic drift or random sampling. Immigration from genetically differentiated populations and a non random mortality induced by Ebola, i.e., selective pressure and cost of sociality, are alternative hypotheses. Understanding the influence of Ebola on gorilla genetic dynamics is of paramount importance for human health, primate evolution and conservation biology.


Assuntos
Ecossistema , Genética Populacional , Gorilla gorilla/genética , Doença pelo Vírus Ebola/epidemiologia , Migração Animal , Animais , Viés , Intervalos de Confiança , Congo/epidemiologia , Frequência do Gene/genética , Loci Gênicos/genética , Marcadores Genéticos , Geografia , Doença pelo Vírus Ebola/mortalidade , Desequilíbrio de Ligação/genética , Polimorfismo Genético , Tamanho da Amostra , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA