Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(14)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39065895

RESUMO

The StarDICE experiment strives to establish an instrumental metrology chain with a targeted accuracy of 1 mmag in griz bandpasses to meet the calibration requirements of next-generation cosmological surveys. Atmospheric transmission is a significant source of systematic uncertainty. We propose a solution relying on an uncooled infrared thermal camera to evaluate gray extinction variations. However, achieving accurate measurements with thermal imaging systems necessitates prior calibration due to temperature-induced effects, compromising their spatial and temporal precision. Moreover, these systems cannot provide scene radiance in physical units by default. This study introduces a new calibration process utilizing a tailored forward modeling approach. The method incorporates sensor, housing, flat-field support, and ambient temperatures, along with raw digital response, as input data. Experimental measurements were conducted inside a climatic chamber, with a FLIR Tau2 camera imaging a thermoregulated blackbody source. The results demonstrate the calibration effectiveness, achieving precise radiance measurements with a temporal pixel dispersion of 0.09 W m-2 sr-1 and residual spatial noise of 0.03 W m-2 sr-1. We emphasize that the accuracy of scene radiance retrieval can be systematically affected by the camera's close thermal environment, especially when the ambient temperature exceeds that of the scene.

2.
Curr Biol ; 21(20): 1720-6, 2011 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-21982593

RESUMO

Tissue mechanics have been shown to play a key role in the regulation of morphogenesis in animals [1-4] and may have an equally important role in plants [5-9]. The aerial organs of plants are formed at the shoot apical meristem following a specific phyllotactic pattern [10]. The initiation of an organ from the meristem requires a highly localized irreversible surface deformation, which depends on the demethylesterification of cell wall pectins [11]. Here, we used atomic force microscopy (AFM) to investigate whether these chemical changes lead to changes in tissue mechanics. By mapping the viscoelasticity and elasticity in living meristems, we observed increases in tissue elasticity, correlated with pectin demethylesterification, in primordia and at the site of incipient organs. Measurements of tissue elasticity at various depths showed that, at the site of incipient primordia, the first increases occurred in subepidermal tissues. The results support the following causal sequence of events: (1) demethylesterification of pectin is triggered in subepidermal tissue layers, (2) this contributes to an increase in elasticity of these layers-the first observable mechanical event in organ initiation, and (3) the process propagates to the epidermis during the outgrowth of the organ.


Assuntos
Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Parede Celular/química , Parede Celular/metabolismo , Meristema/citologia , Pectinas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Elasticidade , Fenômenos Mecânicos , Meristema/metabolismo , Microscopia de Força Atômica , Epiderme Vegetal/citologia , Epiderme Vegetal/crescimento & desenvolvimento , Epiderme Vegetal/metabolismo
3.
PLoS One ; 5(12): e14441, 2010 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-21203432

RESUMO

BACKGROUND: In culture, isogenic mammalian cells typically display enduring phenotypic heterogeneity that arises from fluctuations of gene expression and other intracellular processes. This diversity is not just simple noise but has biological relevance by generating plasticity. Noise driven plasticity was suggested to be a stem cell-specific feature. RESULTS: Here we show that the phenotypes of proliferating tissue progenitor cells such as primary mononuclear muscle cells can also spontaneously fluctuate between different states characterized by the either high or low expression of the muscle-specific cell surface molecule CD56 and by the corresponding high or low capacity to form myotubes. Although this capacity is a cell-intrinsic property, the cells switch their phenotype under the constraints imposed by the highly heterogeneous microenvironment created by their own collective movement. The resulting heterogeneous cell population is characterized by a dynamic equilibrium between "high CD56" and "low CD56" phenotype cells with distinct spatial distribution. Computer simulations reveal that this complex dynamic is consistent with a context-dependent noise driven bistable model where local microenvironment acts on the cellular state by encouraging the cell to fluctuate between the phenotypes until the low noise state is found. CONCLUSIONS: These observations suggest that phenotypic fluctuations may be a general feature of any non-terminally differentiated cell. The cellular microenvironment created by the cells themselves contributes actively and continuously to the generation of fluctuations depending on their phenotype. As a result, the cell phenotype is determined by the joint action of the cell-intrinsic fluctuations and by collective cell-to-cell interactions.


Assuntos
Linhagem da Célula , Mioblastos/citologia , Antígeno CD56/metabolismo , Comunicação Celular , Diferenciação Celular , Separação Celular , Células Cultivadas , Simulação por Computador , Metilação de DNA , Citometria de Fluxo , Humanos , Modelos Biológicos , Fenótipo , Processos Estocásticos , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA