Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 248: 109889, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38401792

RESUMO

Autism spectrum disorders (ASD) are complex neurodevelopmental disorders characterized by deficient social communication and interaction together with restricted, stereotyped behaviors. Currently approved treatments relieve comorbidities rather than core symptoms. Since excitation/inhibition balance and synaptic plasticity are disrupted in ASD, molecules targeting excitatory synaptic transmission appear as highly promising candidates to treat this pathology. Among glutamatergic receptors, the NMDA receptor has received particular attention through the last decade to develop novel allosteric modulators. Here, we show that positive NMDA receptor modulation by zelquistinel, a spirocyclic ß-lactam platform chemical, relieves core symptoms in two genetic and one environmental mouse models of ASD. A single oral dose of zelquistinel rescued, in a dose-response manner, social deficits and stereotypic behavior in Shank3Δex13-16-/- mice while chronic intraperitoneal administration promoted a long-lasting relief of such autistic-like features in these mice. Subchronic oral mid-dose zelquistinel treatment demonstrated durable effects in Shank3Δex13-16-/-, Fmr1-/- and in utero valproate-exposed mice. Carry-over effects were best maintained in the Fmr1 null mouse model, with social parameters being still fully recovered two weeks after treatment withdrawal. Among recently developed NMDA receptor subunit modulators, zelquistinel displays a promising therapeutic potential to relieve core symptoms in ASD patients, with oral bioavailability and long-lasting effects boding well for clinical applications. Efficacy in three mouse models with different etiologies supports high translational value. Further, this compound represents an innovative pharmacological tool to investigate plasticity mechanisms underlying behavioral deficits in animal models of ASD.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Camundongos , Humanos , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Receptores de N-Metil-D-Aspartato , Comportamento Estereotipado , Camundongos Knockout , Modelos Animais de Doenças , Proteínas dos Microfilamentos , Proteínas do Tecido Nervoso , Proteína do X Frágil da Deficiência Intelectual
2.
Biol Psychiatry ; 95(2): 123-135, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37207936

RESUMO

BACKGROUND: Deficient social interactions are a hallmark of major neuropsychiatric disorders, and accumulating evidence points to altered social reward and motivation as key underlying mechanisms of these pathologies. In the present study, we further explored the role of the balance of activity between D1 and D2 receptor-expressing striatal projection neurons (D1R- and D2R-SPNs) in the control of social behavior, challenging the hypothesis that excessive D2R-SPN activity, rather than deficient D1R-SPN activity, compromises social behavior. METHODS: We selectively ablated D1R- and D2R-SPNs using an inducible diphtheria toxin receptor-mediated cell targeting strategy and assessed social behavior as well as repetitive/perseverative behavior, motor function, and anxiety levels. We tested the effects of optogenetic stimulation of D2R-SPNs in the nucleus accumbens (NAc) and pharmacological compounds repressing D2R-SPN. RESULTS: Targeted deletion of D1R-SPNs in the NAc blunted social behavior in mice, facilitated motor skill learning, and increased anxiety levels. These behaviors were normalized by pharmacological inhibition of D2R-SPN, which also repressed transcription in the efferent nucleus, the ventral pallidum. Ablation of D1R-SPNs in the dorsal striatum had no impact on social behavior but impaired motor skill learning and decreased anxiety levels. Deletion of D2R-SPNs in the NAc produced motor stereotypies but facilitated social behavior and impaired motor skill learning. We mimicked excessive D2R-SPN activity by optically stimulating D2R-SPNs in the NAc and observed a severe deficit in social interaction that was prevented by D2R-SPN pharmacological inhibition. CONCLUSIONS: Repressing D2R-SPN activity may represent a promising therapeutic strategy to relieve social deficits in neuropsychiatric disorders.


Assuntos
Neurônios , Núcleo Accumbens , Camundongos , Animais , Neurônios/fisiologia , Comportamento Social , Motivação , Aprendizagem , Receptores de Dopamina D1/metabolismo
3.
Nat Chem Biol ; 18(8): 894-903, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35681029

RESUMO

Membrane proteins, including ion channels, receptors and transporters, are often composed of multiple subunits and can form large complexes. Their specific composition in native tissues is difficult to determine and remains largely unknown. In this study, we developed a method for determining the subunit composition of endogenous cell surface protein complexes from isolated native tissues. Our method relies on nanobody-based sensors, which enable proximity detection between subunits in time-resolved Förster resonance energy transfer (FRET) measurements. Additionally, given conformation-specific nanobodies, the activation of these complexes can be recorded in native brain tissue. Applied to the metabotropic glutamate receptors in different brain regions, this approach revealed the clear existence of functional metabotropic glutamate (mGlu)2-mGlu4 heterodimers in addition to mGlu2 and mGlu4 homodimers. Strikingly, the mGlu4 subunits appear to be mainly heterodimers in the brain. Overall, these versatile biosensors can determine the presence and activity of endogenous membrane proteins in native tissues with high fidelity and convenience.


Assuntos
Ácido Glutâmico , Receptores de Glutamato Metabotrópico , Encéfalo/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Receptores de Glutamato Metabotrópico/metabolismo
4.
Neuropsychopharmacology ; 47(9): 1680-1692, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35418620

RESUMO

Autism Spectrum Disorders (ASD) are neurodevelopmental disorders whose diagnosis relies on deficient social interaction and communication together with repetitive behavior. To date, no pharmacological treatment has been approved that ameliorates social behavior in patients with ASD. Based on the excitation/inhibition imbalance theory of autism, we hypothesized that bromide ions, long used as an antiepileptic medication, could relieve core symptoms of ASD. We evaluated the effects of chronic sodium bromide (NaBr) administration on autistic-like symptoms in three genetic mouse models of autism: Oprm1-/-, Fmr1-/- and Shank3Δex13-16-/- mice. We showed that chronic NaBr treatment relieved autistic-like behaviors in these three models. In Oprm1-/- mice, these beneficial effects were superior to those of chronic bumetanide administration. At transcriptional level, chronic NaBr in Oprm1 null mice was associated with increased expression of genes coding for chloride ions transporters, GABAA receptor subunits, oxytocin and mGlu4 receptor. Lastly, we uncovered synergistic alleviating effects of chronic NaBr and a positive allosteric modulator (PAM) of mGlu4 receptor on autistic-like behavior in Oprm1-/- mice. We evidenced in heterologous cells that bromide ions behave as PAMs of mGlu4, providing a molecular mechanism for such synergy. Our data reveal the therapeutic potential of bromide ions, alone or in combination with a PAM of mGlu4 receptor, for the treatment of ASDs.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Animais , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno Autístico/tratamento farmacológico , Comportamento Animal , Brometos/farmacologia , Brometos/uso terapêutico , Modelos Animais de Doenças , Proteína do X Frágil da Deficiência Intelectual , Camundongos , Camundongos Knockout , Proteínas dos Microfilamentos/farmacologia , Proteínas dos Microfilamentos/uso terapêutico , Proteínas do Tecido Nervoso/genética , Receptores de GABA-A , Comportamento Social , Compostos de Sódio
5.
Microbiome ; 9(1): 157, 2021 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-34238386

RESUMO

BACKGROUND: Autism spectrum disorders (ASD) are associated with dysregulation of the microbiota-gut-brain axis, changes in microbiota composition as well as in the fecal, serum, and urine levels of microbial metabolites. Yet a causal relationship between dysregulation of the microbiota-gut-brain axis and ASD remains to be demonstrated. Here, we hypothesized that the microbial metabolite p-Cresol, which is more abundant in ASD patients compared to neurotypical individuals, could induce ASD-like behavior in mice. RESULTS: Mice exposed to p-Cresol for 4 weeks in drinking water presented social behavior deficits, stereotypies, and perseverative behaviors, but no changes in anxiety, locomotion, or cognition. Abnormal social behavior induced by p-Cresol was associated with decreased activity of central dopamine neurons involved in the social reward circuit. Further, p-Cresol induced changes in microbiota composition and social behavior deficits could be transferred from p-Cresol-treated mice to control mice by fecal microbiota transplantation (FMT). We also showed that mice transplanted with the microbiota of p-Cresol-treated mice exhibited increased fecal p-Cresol excretion, compared to mice transplanted with the microbiota of control mice. In addition, we identified possible p-Cresol bacterial producers. Lastly, the microbiota of control mice rescued social interactions, dopamine neurons excitability, and fecal p-Cresol levels when transplanted to p-Cresol-treated mice. CONCLUSIONS: The microbial metabolite p-Cresol induces selectively ASD core behavioral symptoms in mice. Social behavior deficits induced by p-Cresol are dependant on changes in microbiota composition. Our study paves the way for therapeutic interventions targeting the microbiota and p-Cresol production to treat patients with ASD. Video abstract.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Microbioma Gastrointestinal , Animais , Transtorno Autístico/etiologia , Cresóis , Transplante de Microbiota Fecal , Humanos , Camundongos
6.
Neuropsychopharmacology ; 46(7): 1373-1385, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33349673

RESUMO

Understanding the neurobiological underpinnings of abstinence from drugs of abuse is critical to allow better recovery and ensure relapse prevention in addicted subjects. By comparing the long-term transcriptional consequences of morphine and cocaine exposure, we identified the metabotropic glutamate receptor subtype 4 (mGluR4) as a promising pharmacological target in morphine abstinence. We evaluated the behavioral and molecular effects of facilitating mGluR4 activity in abstinent mice. Transcriptional regulation of marker genes of medium spiny neurons (MSNs) allowed best discriminating between 4-week morphine and cocaine abstinence in the nucleus accumbens (NAc). Among these markers, Grm4, encoding mGluR4, displayed down-regulated expression in the caudate putamen and NAc of morphine, but not cocaine, abstinent mice. Chronic administration of the mGluR4 positive allosteric modulator (PAM) VU0155041 (2.5 and 5 mg/kg) rescued social behavior, normalized stereotypies and anxiety and blunted locomotor sensitization in morphine abstinent mice. This treatment improved social preference but increased stereotypies in cocaine abstinent mice. Finally, the beneficial behavioral effects of VU0155041 treatment in morphine abstinent mice were correlated with restored expression of key MSN and neural activity marker genes in the NAc. This study reports that chronic administration of the mGluR4 PAM VU0155041 relieves long-term deleterious consequences of morphine exposure. It illustrates the neurobiological differences between opiate and psychostimulant abstinence and points to pharmacological repression of excessive activity of D2-MSNs in the NAc as a promising therapeutic lever in drug addiction.


Assuntos
Cocaína , Receptores de Glutamato Metabotrópico , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/farmacologia , Núcleo Accumbens
7.
Elife ; 92020 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-32003745

RESUMO

GPR88 is an orphan G protein-coupled receptor (GPCR) considered as a promising therapeutic target for neuropsychiatric disorders; its pharmacology, however, remains scarcely understood. Based on our previous report of increased delta opioid receptor activity in Gpr88 null mice, we investigated the impact of GPR88 co-expression on the signaling of opioid receptors in vitro and revealed that GPR88 inhibits the activation of both their G protein- and ß-arrestin-dependent signaling pathways. In Gpr88 knockout mice, morphine-induced locomotor sensitization, withdrawal and supra-spinal analgesia were facilitated, consistent with a tonic inhibitory action of GPR88 on µOR signaling. We then explored GPR88 interactions with more striatal versus non-neuronal GPCRs, and revealed that GPR88 can decrease the G protein-dependent signaling of most receptors in close proximity, but impedes ß-arrestin recruitment by all receptors tested. Our study unravels an unsuspected buffering role of GPR88 expression on GPCR signaling, with intriguing consequences for opioid and striatal functions.


Assuntos
Corpo Estriado/metabolismo , Receptores Acoplados a Proteínas G , Receptores Opioides/metabolismo , Transdução de Sinais/genética , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores Opioides/genética , beta-Arrestinas/metabolismo
8.
Mol Metab ; 21: 22-35, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30686771

RESUMO

OBJECTIVES: The Fragile X Mental Retardation Protein (FMRP) is a widely expressed RNA-binding protein involved in translation regulation. Since the absence of FMRP leads to Fragile X Syndrome (FXS) and autism, FMRP has been extensively studied in brain. The functions of FMRP in peripheral organs and on metabolic homeostasis remain elusive; therefore, we sought to investigate the systemic consequences of its absence. METHODS: Using metabolomics, in vivo metabolic phenotyping of the Fmr1-KO FXS mouse model and in vitro approaches, we show that the absence of FMRP induced a metabolic shift towards enhanced glucose tolerance and insulin sensitivity, reduced adiposity, and increased ß-adrenergic-driven lipolysis and lipid utilization. RESULTS: Combining proteomics and cellular assays, we highlight that FMRP loss increased hepatic protein synthesis and impacted pathways notably linked to lipid metabolism. Mapping metabolomic and proteomic phenotypes onto a signaling and metabolic network, we predicted that the coordinated metabolic response to FMRP loss was mediated by dysregulation in the abundances of specific hepatic proteins. We experimentally validated these predictions, demonstrating that the translational regulator FMRP associates with a subset of mRNAs involved in lipid metabolism. Finally, we highlight that FXS patients mirror metabolic variations observed in Fmr1-KO mice with reduced circulating glucose and insulin and increased free fatty acids. CONCLUSIONS: Loss of FMRP results in a widespread coordinated systemic response that notably involves upregulation of protein translation in the liver, increased utilization of lipids, and significant changes in metabolic homeostasis. Our study unravels metabolic phenotypes in FXS and further supports the importance of translational regulation in the homeostatic control of systemic metabolism.


Assuntos
Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Glucose/metabolismo , Lipólise , Adipócitos/metabolismo , Animais , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/metabolismo , Feminino , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/sangue , Síndrome do Cromossomo X Frágil/patologia , Técnicas de Inativação de Genes , Glucose/análise , Homeostase , Humanos , Insulina/análise , Insulina/metabolismo , Leptina/metabolismo , Fígado/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Knockout , Biossíntese de Proteínas , Proteômica , RNA Mensageiro/metabolismo
9.
Transl Psychiatry ; 8(1): 197, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30242222

RESUMO

The mu opioid receptor (MOR) plays a critical role in modulating social behavior in humans and animals. Accordingly, MOR null mice display severe alterations in their social repertoire as well as multiple other behavioral deficits, recapitulating core and secondary symptoms of autism spectrum disorder (ASD). Such behavioral profile suggests that MOR dysfunction, and beyond this, altered reward processes may contribute to ASD etiopathology. Interestingly, the only treatments that proved efficacy in relieving core symptoms of ASD, early behavioral intervention programs, rely principally on positive reinforcement to ameliorate behavior. The neurobiological underpinnings of their beneficial effects, however, remain poorly understood. Here we back-translated applied behavior analysis (ABA)-based behavioral interventions to mice lacking the MOR (Oprm1-/-), as a model of autism with blunted reward processing. By associating a positive reinforcement, palatable food reward, to daily encounter with a wild-type congener, we were able to rescue durably social interaction and preference in Oprm1-/- mice. Along with behavioral improvements, the expression of marker genes of neuronal activity and plasticity as well as genes of the oxytocin/vasopressin system were remarkably normalized in the reward/social circuitry. Our study provides further evidence for a critical involvement of reward processes in driving social behavior and opens new perspectives regarding therapeutic intervention in ASD.


Assuntos
Transtorno do Espectro Autista/terapia , Terapia Comportamental , Comportamento Animal , Receptores Opioides mu/genética , Recompensa , Comportamento Social , Animais , Análise do Comportamento Aplicada , Transtorno do Espectro Autista/genética , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Plasticidade Neuronal/genética
10.
J Med Chem ; 61(19): 8670-8692, 2018 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-30199637

RESUMO

Oxytocin (OT) and its receptor (OT-R) are implicated in the etiology of autism spectrum disorders (ASD), and OT-R is a potential target for therapeutic intervention. Very few nonpeptide oxytocin agonists have currently been reported. Their molecular and in vivo pharmacology remain to be clarified, and none of them has been shown to be efficient in improving social interaction in animal models relevant to ASD. In an attempt to rationalize the design of centrally active nonpeptide full agonists, we studied in a systematic way the structural determinants of the affinity and efficacy of representative ligands of the V1a and V2 vasopressin receptor subtypes (V1a-R and V2-R) and of the oxytocin receptor. Our results confirm the subtlety of the structure-affinity and structure-efficacy relationships around vasopressin/oxytocin receptor ligands and lead however to the first nonpeptide OT receptor agonist active in a mouse model of ASD after peripheral ip administration.


Assuntos
Transtorno Autístico/tratamento farmacológico , Modelos Animais de Doenças , Relações Interpessoais , Psicotrópicos/farmacologia , Pirazóis/farmacologia , Pirrolidinas/farmacologia , Receptores Opioides mu/fisiologia , Receptores de Ocitocina/administração & dosagem , Receptores de Ocitocina/agonistas , Animais , Transtorno Autístico/psicologia , Barreira Hematoencefálica/efeitos dos fármacos , Feminino , Células HEK293 , Humanos , Ligantes , Masculino , Camundongos , Camundongos Knockout , Psicotrópicos/química , Pirazóis/uso terapêutico , Pirrolidinas/uso terapêutico , Receptores de Ocitocina/uso terapêutico , Relação Estrutura-Atividade
11.
Br J Pharmacol ; 175(14): 2750-2769, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28369738

RESUMO

The endogenous opioid system is well known to relieve pain and underpin the rewarding properties of most drugs of abuse. Among opioid receptors, the µ receptor mediates most of the analgesic and rewarding properties of opioids. Based on striking similarities between social distress, physical pain and opiate withdrawal, µ receptors have been proposed to play a critical role in modulating social behaviour in humans and animals. This review summarizes experimental data demonstrating such role and proposes a novel model, the µ opioid receptor balance model, to account for the contribution of µ receptors to the subtle regulation of social behaviour. Interestingly, µ receptor null mice show behavioural deficits similar to those observed in patients with autism spectrum disorder (ASD), including severe impairment in social interactions. Therefore, after a brief summary of recent evidence for blunted (social) reward processes in subjects with ASD, we review here arguments for altered µ receptor function in this pathology. This article is part of a themed section on Emerging Areas of Opioid Pharmacology. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.14/issuetoc.


Assuntos
Transtorno do Espectro Autista/metabolismo , Receptores Opioides mu/metabolismo , Recompensa , Comportamento Social , Animais , Humanos , Receptores Opioides mu/genética
12.
Addict Biol ; 22(5): 1205-1217, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27126842

RESUMO

Unified theories of addiction are challenged by differing drug-seeking behaviors and neurobiological adaptations across drug classes, particularly for narcotics and psychostimulants. We previously showed that protracted abstinence to opiates leads to despair behavior and social withdrawal in mice, and we identified a transcriptional signature in the extended amygdala that was also present in animals abstinent from nicotine, Δ9-tetrahydrocannabinol (THC) and alcohol. Here we examined whether protracted abstinence to these four drugs would also share common behavioral features, and eventually differ from abstinence to the prototypic psychostimulant cocaine. We found similar reduced social recognition, increased motor stereotypies and increased anxiety with relevant c-fos response alterations in morphine, nicotine, THC and alcohol abstinent mice. Protracted abstinence to cocaine, however, led to strikingly distinct, mostly opposing adaptations at all levels, including behavioral responses, neuronal activation and gene expression. Together, these data further document the existence of common hallmarks for protracted abstinence to opiates, nicotine, THC and alcohol that develop within motivation/emotion brain circuits. In our model, however, these do not apply to cocaine, supporting the notion of unique mechanisms in psychostimulant abuse.


Assuntos
Tonsila do Cerebelo/metabolismo , Analgésicos Opioides/efeitos adversos , Comportamento Animal , Agonistas de Receptores de Canabinoides/efeitos adversos , Depressores do Sistema Nervoso Central/efeitos adversos , Inibidores da Captação de Dopamina/efeitos adversos , Agonistas Nicotínicos/efeitos adversos , Comportamento Social , Síndrome de Abstinência a Substâncias/fisiopatologia , Abstinência de Álcool , Animais , Ansiedade/psicologia , Encéfalo/metabolismo , Cocaína/efeitos adversos , Dronabinol/efeitos adversos , Comportamento de Procura de Droga , Emoções , Etanol/efeitos adversos , Masculino , Camundongos , Morfina/efeitos adversos , Motivação , Nicotina/efeitos adversos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Comportamento Estereotipado/fisiologia , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/psicologia
13.
J Stud Alcohol Drugs ; 77(5): 692-5, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27588526

RESUMO

Quitting drug abuse represents a true challenge for addicted individuals because of the highly persistent vulnerability to relapse. Identifying long-lasting, drug-induced alterations in the brain-including at the transcriptome level-that underlie such vulnerability appears invaluable to improve relapse prevention. Despite substantial technological developments and research effort, however, the picture of drug-induced adaptations provided by high-throughput transcriptomics remains frustratingly partial, notably because of methodological issues. Major advances were made, however, regarding the time course and specificity of long-term transcriptional consequences of drug exposure as well as the recruitment of small, noncoding mRNAs (or miRNAs [microRNAs]) that were previously undetectable. Most importantly, high-throughput studies have benefited from systems biology approaches and shifted their interest toward regulations within functional gene networks rather than individual changes. Such network-based gene discovery approaches have proven informative to delineate the physiological processes, cellular signaling pathways, and neuronal populations altered by drug exposure. Provided the high-throughput effort will be pursued, together with the development of adapted bioinformatics tools, addiction transcriptomics should progressively integrate data across multiple scales (from epigenome to protein), allowing a better understanding of the genetics of drug abuse and opening novel therapeutic trails.


Assuntos
Comportamento Aditivo/genética , Compreensão , Sinais (Psicologia) , Transtornos Relacionados ao Uso de Substâncias/genética , Transcrição Gênica/genética , Adaptação Fisiológica/genética , Comportamento Aditivo/diagnóstico , Comportamento Aditivo/terapia , Encéfalo/fisiologia , Biologia Computacional/tendências , Humanos , Recidiva , Transtornos Relacionados ao Uso de Substâncias/diagnóstico , Transtornos Relacionados ao Uso de Substâncias/terapia , Fatores de Tempo
14.
Proc Natl Acad Sci U S A ; 113(26): E3619-28, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27233938

RESUMO

Fragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP. How FMRP impacts synaptic protein translation and which mRNAs are most important for the pathology remain unclear. Here we show by cross-linking immunoprecipitation in cortical neurons that FMRP is mostly associated with one unique mRNA: diacylglycerol kinase kappa (Dgkκ), a master regulator that controls the switch between diacylglycerol and phosphatidic acid signaling pathways. The absence of FMRP in neurons abolishes group 1 metabotropic glutamate receptor-dependent DGK activity combined with a loss of Dgkκ expression. The reduction of Dgkκ in neurons is sufficient to cause dendritic spine abnormalities, synaptic plasticity alterations, and behavior disorders similar to those observed in the FXS mouse model. Overexpression of Dgkκ in neurons is able to rescue the dendritic spine defects of the Fragile X Mental Retardation 1 gene KO neurons. Together, these data suggest that Dgkκ deregulation contributes to FXS pathology and support a model where FMRP, by controlling the translation of Dgkκ, indirectly controls synaptic proteins translation and membrane properties by impacting lipid signaling in dendritic spine.


Assuntos
Diacilglicerol Quinase/metabolismo , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Síndrome do Cromossomo X Frágil/metabolismo , Neurônios/enzimologia , Idoso , Animais , Espinhas Dendríticas/enzimologia , Espinhas Dendríticas/metabolismo , Diacilglicerol Quinase/genética , Diglicerídeos/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/enzimologia , Síndrome do Cromossomo X Frágil/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Neurônios/metabolismo , Transdução de Sinais
15.
Biol Psychiatry ; 79(11): 917-27, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-26188600

RESUMO

BACKGROUND: GPR88 is an orphan G protein coupled receptor highly enriched in the striatum, and previous studies have focused on GPR88 function in striatal physiology. The receptor is also expressed in other brain areas, and here we examined whether GPR88 function extends beyond striatal-mediated responses. METHODS: We created Gpr88 knockout mice and examined both striatal and extrastriatal regions at molecular and cellular levels. We also tested striatum-, hippocampus-, and amygdala-dependent behaviors in Gpr88(-/-) mice using extensive behavioral testing. RESULTS: We found increased G protein coupling for delta opioid receptor (DOR) and mu opioid, but not other Gi/o coupled receptors, in the striatum of Gpr88 knockout mice. We also found modifications in gene transcription, dopamine and serotonin contents, and dendritic morphology inside and outside the striatum. Behavioral testing confirmed striatal deficits (hyperactivity, stereotypies, motor impairment in rotarod). In addition, mutant mice performed better in spatial tasks dependent on hippocampus (Y-maze, novel object recognition, dual solution cross-maze) and also showed markedly reduced levels of anxiety (elevated plus maze, marble burying, novelty suppressed feeding). Strikingly, chronic blockade of DOR using naltrindole partially improved motor coordination and normalized spatial navigation and anxiety of Gpr88(-/-) mice. CONCLUSIONS: We demonstrate that GPR88 is implicated in a large repertoire of behavioral responses that engage motor activity, spatial learning, and emotional processing. Our data also reveal functional antagonism between GPR88 and DOR activities in vivo. The therapeutic potential of GPR88 therefore extends to cognitive and anxiety disorders, possibly in interaction with other receptor systems.


Assuntos
Ansiedade/metabolismo , Transtornos dos Movimentos/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Aprendizagem Espacial/fisiologia , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/patologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/patologia , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Dendritos/patologia , Dopamina/metabolismo , Feminino , Hipocampo/metabolismo , Hipocampo/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transtornos dos Movimentos/tratamento farmacológico , Transtornos dos Movimentos/patologia , Naltrexona/análogos & derivados , Naltrexona/farmacologia , Antagonistas de Entorpecentes/farmacologia , Receptores Acoplados a Proteínas G/genética , Receptores Opioides delta/metabolismo , Receptores Opioides mu/metabolismo , Serotonina/metabolismo , Aprendizagem Espacial/efeitos dos fármacos
16.
Neuropsychopharmacology ; 39(9): 2049-60, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24619243

RESUMO

The etiology of Autism Spectrum Disorders (ASDs) remains largely unknown. Identifying vulnerability genes for autism represents a major challenge in the field and allows the development of animal models for translational research. Mice lacking the mu opioid receptor gene (Oprm1(-/-)) were recently proposed as a monogenic mouse model of autism, based on severe deficits in social behavior and communication skills. We confirm this hypothesis by showing that adult Oprm1(-/-) animals recapitulate core and multiple comorbid behavioral symptoms of autism and also display anatomical, neurochemical, and genetic landmarks of the disease. Chronic facilitation of mGluR4 signaling, which we identified as a novel pharmacological target in ASDs in these mice, was more efficient in alleviating behavioral deficits than the reference molecule risperidone. Altogether, our data provide first evidence that disrupted mu opioid receptor signaling is sufficient to trigger a comprehensive autistic syndrome, maybe through blunted social reward processes, and this mouse model opens promising avenues for therapeutic innovation.


Assuntos
Transtornos Globais do Desenvolvimento Infantil/patologia , Transtornos Globais do Desenvolvimento Infantil/fisiopatologia , Receptores de Glutamato Metabotrópico/metabolismo , Receptores Opioides mu/metabolismo , Agressão/efeitos dos fármacos , Agressão/fisiologia , Anilidas/farmacologia , Animais , Ansiedade/tratamento farmacológico , Ansiedade/patologia , Ansiedade/fisiopatologia , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Encéfalo/patologia , Encéfalo/fisiopatologia , Transtornos Globais do Desenvolvimento Infantil/tratamento farmacológico , Convulsivantes/farmacologia , Ácidos Cicloexanocarboxílicos/farmacologia , Modelos Animais de Doenças , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Pentilenotetrazol/farmacologia , Receptores Opioides mu/genética , Convulsões/induzido quimicamente , Convulsões/fisiopatologia , Comportamento Social
17.
Neuropsychopharmacology ; 38(6): 1050-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23303070

RESUMO

Pharmacological data suggest that delta opioid receptors modulate learning and memory processes. In the present study, we investigated whether inactivation of the delta opioid receptor modifies hippocampus (HPC)- and striatum-dependent behaviors. We first assessed HPC-dependent learning in mice lacking the receptor (Oprd1(-/-) mice) or wild-type (WT) mice treated with the delta opioid antagonist naltrindole using novel object recognition, and a dual-solution cross-maze task. Second, we subjected mutant animals to memory tests addressing striatum-dependent learning using a single-solution response cross-maze task and a motor skill-learning task. Genetic and pharmacological inactivation of delta opioid receptors reduced performance in HPC-dependent object place recognition. Place learning was also altered in Oprd1(-/-) animals, whereas striatum-dependent response and procedural learning were facilitated. Third, we investigated the expression levels for a large set of genes involved in neurotransmission in both HPC and striatum of Oprd1(-/-) mice. Gene expression was modified for several key genes that may contribute to alter hippocampal and striatal functions, and bias striatal output towards striatonigral activity. To test this hypothesis, we finally examined locomotor effects of dopamine receptor agonists. We found that Oprd1(-/-) and naltrindole-treated WT mice were more sensitive to the stimulant locomotor effect of SKF-81297 (D1/D5), supporting the hypothesis of facilitated striatonigral output. These data suggest, for the first time, that delta receptor activity tonically inhibits striatal function, and demonstrate that delta opioid receptors modulate learning and memory performance by regulating the HPC/striatum balance.


Assuntos
Corpo Estriado/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , Atividade Motora/fisiologia , Destreza Motora/fisiologia , Receptores Opioides delta/deficiência , Animais , Humanos , Masculino , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Opioides delta/genética
18.
J Neurosci ; 32(21): 7301-10, 2012 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-22623675

RESUMO

G-protein-coupled receptors (GPCRs) mediate numerous physiological functions and represent prime therapeutic targets. Receptor trafficking upon agonist stimulation is critical for GPCR function, but examining this process in vivo remains a true challenge. Using knock-in mice expressing functional fluorescent delta opioid receptors under the control of the endogenous promoter, we visualized in vivo internalization of this native GPCR upon physiological stimulation. We developed a paradigm in which animals were made dependent on morphine in a drug-paired context. When re-exposed to this context in a drug-free state, mice showed context-dependent withdrawal signs and activation of the hippocampus. Receptor internalization was transiently detected in a subset of CA1 neurons, uncovering regionally restricted opioid peptide release. Importantly, a pool of surface receptors always remained, which contrasts with the in vivo profile previously established for exogenous drug-induced internalization. Therefore, a distinct response is observed at the receptor level upon a physiological or pharmacological stimulation. Altogether, direct in vivo GPCR visualization enables mapping receptor stimulation promoted by a behavioral challenge and represents a powerful approach to study endogenous GPCR physiology.


Assuntos
Hipocampo/metabolismo , Transporte Proteico , Receptores Opioides delta/metabolismo , Animais , Encefalina Metionina/metabolismo , Feminino , Técnicas de Introdução de Genes , Hipocampo/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Imagem Molecular , Morfina/farmacologia , Receptores Opioides delta/agonistas , Receptores Opioides delta/genética , Síndrome de Abstinência a Substâncias/metabolismo
19.
Psychopharmacology (Berl) ; 223(1): 99-106, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22526530

RESUMO

RATIONALE: The exact role of delta opioid receptors in drug-induced conditioned place preference (CPP) remains debated. Under classical experimental conditions, morphine-induced CPP is decreased in mice lacking delta opioid receptors (Oprd1 (-/-)). Morphine self-administration, however, is maintained, suggesting that drug-context association rather than drug reward is deficient in these animals. OBJECTIVES: This study further examined the role of delta opioid receptors in mediating drug-cue associations, which are necessary for the expression of morphine-induced CPP. METHODS: We first identified experimental conditions under which Oprd1 (-/-) mice are able to express CPP to morphine (5, 10 or 20 mg/kg) in a drug-free state and observed that, in this paradigm, CPP was dependent on circadian time conditions. We then took advantage of this particularity to assess the ability of various cues (internal or discrete), predicting either drug or food reward, to restore CPP induced by morphine (10 mg/kg) in Oprd1 (-/-) mice in conditions under which they normally fail to express CPP. RESULTS: We found that presentation of circadian, drug or auditory cues, predicting morphine or food reward, restored morphine CPP in Oprd1 (-/-) mice, which then performed as well as control mice. CONCLUSIONS: This study reveals that, in contrast to spatial cues, internal or discrete morphine-predicting stimuli permit full expression of morphine CPP in Oprd1 (-/-) mice. Delta receptors, therefore, appear to play a crucial role in modulating spatial contextual cue-related responses. This activity may be critical when context gains control over behavior, as is the case for context-induced relapse in drug abuse.


Assuntos
Condicionamento Clássico/efeitos dos fármacos , Morfina/farmacologia , Receptores Opioides delta/genética , Recompensa , Analgésicos Opioides/administração & dosagem , Analgésicos Opioides/farmacologia , Animais , Comportamento Animal/efeitos dos fármacos , Ritmo Circadiano , Sinais (Psicologia) , Relação Dose-Resposta a Droga , Comportamento Alimentar , Feminino , Masculino , Camundongos , Camundongos Knockout , Morfina/administração & dosagem
20.
Addict Biol ; 17(1): 1-12, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21955143

RESUMO

Addiction is a chronic brain disorder. Prolonged abstinence from drugs of abuse involves dysphoria, high stress responsiveness and craving. The neurobiology of drug abstinence, however, is poorly understood. We previously identified a unique set of hundred mu-opioid receptor-dependent genes in the extended amygdala, a key site for hedonic and stress processing in the brain. Here we examined these candidate genes either immediately after chronic morphine, nicotine, Δ9-tetrahydrocannabinol or alcohol, or following 4 weeks of abstinence. Regulation patterns strongly differed among chronic groups. In contrast, gene regulations strikingly converged in the abstinent groups and revealed unforeseen common adaptations within a novel huntingtin-centered molecular network previously unreported in addiction research. This study demonstrates that, regardless the drug, a specific set of transcriptional regulations develops in the abstinent brain, which possibly contributes to the negative affect characterizing protracted abstinence. This transcriptional signature may represent a hallmark of drug abstinence and a unitary adaptive molecular mechanism in substance abuse disorders.


Assuntos
Comportamento Aditivo/fisiopatologia , Encéfalo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Síndrome de Abstinência a Substâncias/fisiopatologia , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Tonsila do Cerebelo/efeitos dos fármacos , Animais , Comportamento Aditivo/genética , Análise por Conglomerados , Modelos Animais de Doenças , Dronabinol/administração & dosagem , Etanol/administração & dosagem , Expressão Gênica/genética , Redes Reguladoras de Genes/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Morfina/administração & dosagem , Nicotina/administração & dosagem , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real , Receptores Opioides mu/efeitos dos fármacos , Receptores Opioides mu/genética , Síndrome de Abstinência a Substâncias/genética , Transtornos Relacionados ao Uso de Substâncias/genética , Temperança , Tempo , Ativação Transcricional/efeitos dos fármacos , Ativação Transcricional/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA