Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 2326, 2023 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-37087464

RESUMO

Replication Protein A (RPA) is a heterotrimeric single stranded DNA-binding protein with essential roles in DNA replication, recombination and repair. Little is known about the structure of RPA in Archaea, the third domain of life. By using an integrative structural, biochemical and biophysical approach, we extensively characterize RPA from Pyrococcus abyssi in the presence and absence of DNA. The obtained X-ray and cryo-EM structures reveal that the trimerization core and interactions promoting RPA clustering on ssDNA are shared between archaea and eukaryotes. However, we also identified a helical domain named AROD (Acidic Rpa1 OB-binding Domain), and showed that, in Archaea, RPA forms an unanticipated tetrameric supercomplex in the absence of DNA. The four RPA molecules clustered within the tetramer could efficiently coat and protect stretches of ssDNA created by the advancing replisome. Finally, our results provide insights into the evolution of this primordial replication factor in eukaryotes.


Assuntos
Replicação do DNA , Proteína de Replicação A , Proteína de Replicação A/metabolismo , DNA/metabolismo , DNA de Cadeia Simples/genética , Reparo do DNA , Ligação Proteica
2.
J Fungi (Basel) ; 9(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36836270

RESUMO

Earlier studies have shown that the outer layers of the conidial and mycelial cell walls of Aspergillus fumigatus are different. In this work, we analyzed the polysaccharidome of the resting conidial cell wall and observed major differences within the mycelium cell wall. Mainly, the conidia cell wall was characterized by (i) a smaller amount of α-(1,3)-glucan and chitin; (ii) a larger amount of ß-(1,3)-glucan, which was divided into alkali-insoluble and water-soluble fractions, and (iii) the existence of a specific mannan with side chains containing galactopyranose, glucose, and N-acetylglucosamine residues. An analysis of A. fumigatus cell wall gene mutants suggested that members of the fungal GH-72 transglycosylase family play a crucial role in the conidia cell wall ß-(1,3)-glucan organization and that α-(1,6)-mannosyltransferases of GT-32 and GT-62 families are essential to the polymerization of the conidium-associated cell wall mannan. This specific mannan and the well-known galactomannan follow two independent biosynthetic pathways.

3.
ACS Chem Biol ; 17(6): 1415-1426, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35649238

RESUMO

Epigenetics has received much attention in the past decade. Many insights on epigenetic (dys)regulation in diseases have been obtained, and clinical therapies targeting them are in place. However, the readers of the epigenetic marks are lacking enlightenment behind this revolution, and it is poorly understood how DNA methylation is being read and translated to chromatin function and cellular responses. Chemical probes targeting the methyl-CpG readers, such as the methyl-CpG binding domain proteins (MBDs), could be used to study this mechanism. We have designed analogues of 5-methylcytosine to probe the MBD domain of human MBD2. By setting up a protein thermal shift assay and an AlphaScreen-based test, we were able to identify three fragments that bind MBD2 alone and disrupt the MBD2-methylated DNA interactions. Two-dimensional NMR experiments and virtual docking gave valuable insights into the interaction of the ligands with the protein showing that the compounds interact with residues that are important for DNA recognition. These constitute the starting point for the design of potent chemical probes for MBD proteins.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA , 5-Metilcitosina/metabolismo , Ilhas de CpG , DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos
4.
Nucleic Acids Res ; 48(4): 2173-2188, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31925419

RESUMO

The XPA protein functions together with the single-stranded DNA (ssDNA) binding protein RPA as the central scaffold to ensure proper positioning of repair factors in multi-protein nucleotide excision repair (NER) machinery. We previously determined the structure of a short motif in the disordered XPA N-terminus bound to the RPA32C domain. However, a second contact between the XPA DNA-binding domain (XPA DBD) and the RPA70AB tandem ssDNA-binding domains, which is likely to influence the orientation of XPA and RPA on the damaged DNA substrate, remains poorly characterized. NMR was used to map the binding interfaces of XPA DBD and RPA70AB. Combining NMR and X-ray scattering data with comprehensive docking and refinement revealed how XPA DBD and RPA70AB orient on model NER DNA substrates. The structural model enabled design of XPA mutations that inhibit the interaction with RPA70AB. These mutations decreased activity in cell-based NER assays, demonstrating the functional importance of XPA DBD-RPA70AB interaction. Our results inform ongoing controversy about where XPA is bound within the NER bubble, provide structural insights into the molecular basis for malfunction of disease-associated XPA missense mutations, and contribute to understanding of the structure and mechanical action of the NER machinery.


Assuntos
Reparo do DNA/genética , Modelos Moleculares , Proteína de Replicação A/química , Proteína de Xeroderma Pigmentoso Grupo A/química , DNA/química , DNA/genética , Dano ao DNA/genética , DNA de Cadeia Simples/química , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Espectroscopia de Ressonância Magnética , Ligação Proteica/genética , Proteína de Replicação A/genética , Proteína de Xeroderma Pigmentoso Grupo A/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA