Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Front Immunol ; 15: 1358219, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529285

RESUMO

African swine fever virus represents a significant reemerging threat to livestock populations, as its incidence and geographic distribution have surged over the past decade in Europe, Asia, and Caribbean, resulting in substantial socio-economic burdens and adverse effects on animal health and welfare. In a previous report, we described the protective properties of our newly thermo-attenuated strain (ASFV-989) in pigs against an experimental infection of its parental Georgia 2007/1 virulent strain. In this new study, our objective was to characterize the molecular mechanisms underlying the attenuation of ASFV-989. We first compared the activation of type I interferon pathway in response to ASFV-989 and Georgia 2007/1 infections, employing both in vivo and in vitro models. Expression of IFN-α was significantly increased in porcine alveolar macrophages infected with ASFV-989 while pigs infected with Georgia 2007/1 showed higher IFN-α than those infected by ASFV-989. We also used a medium-throughput transcriptomic approach to study the expression of viral genes by both strains, and identified several patterns of gene expression. Subsequently, we investigated whether proteins encoded by the eight genes deleted in ASFV-989 contribute to the modulation of the type I interferon signaling pathway. Using different strategies, we showed that MGF505-4R interfered with the induction of IFN-α/ß pathway, likely through interaction with TRAF3. Altogether, our data reveal key differences between ASFV-989 and Georgia 2007/1 in their ability to control IFN-α/ß signaling and provide molecular mechanisms underlying the role of MGF505-4R as a virulence factor.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Suínos , Animais , Virulência , Macrófagos
2.
Viruses ; 14(12)2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36560781

RESUMO

African swine fever (ASF) is a contagious viral disease of suids that induces high mortality in domestic pigs and wild boars. Given the current spread of ASF, the development of a vaccine is a priority. During an attempt to inactivate the Georgia 2007/1 strain via heat treatment, we fortuitously generated an attenuated strain called ASFV-989. Compared to Georgia, the ASFV-989 strain genome has a deletion of 7458 nucleotides located in the 5'-end encoding region of MGF 505/360, which allowed for developing a DIVA PCR system. In vitro, in porcine alveolar macrophages, the replication kinetics of the ASFV-989 and Georgia strains were identical. In vivo, specific-pathogen-free (SPF) pigs inoculated with the ASFV-989 strain, either intramuscularly or oronasally, exhibited transient hyperthermia and slightly decreased growth performance. Animals immunized with the ASFV-989 strain showed viremia 100 to 1000 times lower than those inoculated with the Georgia strain and developed a rapid antibody and cell-mediated response. In ASFV-989-immunized pigs challenged 2 or 4 weeks later with the Georgia strain, no symptoms were recorded and no viremia for the challenge strain was detected. These results show that the ASFV-989 strain is a promising non-GMO vaccine candidate that is usable either intramuscularly or oronasally.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas , Vacinas Virais , Suínos , Animais , Febre Suína Africana/prevenção & controle , Vírus da Febre Suína Africana/fisiologia , Sus scrofa , Imunização
3.
Virologie (Montrouge) ; 26(5): 327-341, 2022 09 01.
Artigo em Francês | MEDLINE | ID: mdl-36413119

RESUMO

Classical swine fever (CSF) is a highly contagious swine-specific disease which may have a huge economic impact for porcine production. CSF is caused by a virus belonging to the Pestivirus genus, which has expanded for the past 5 years with the discovery of new species whose genetic proximity to the CSF virus could further complicate laboratory diagnosis. The various forms of the disease, and in particular the increased frequency of attenuated forms, linked to an evolution of CSF virus strains towards a reduction in their virulence, delay clinical diagnosis. Thus, a long period may elapse before an outbreak is detected, allowing the virus to circulate longer, with the risk of spreading to distant geographical areas. Efforts must be maintained in terms of surveillance and diagnostic tools development in order to detect CSF virus infection early and thus limit the spread of the disease and facilitate control measures.


La peste porcine classique (PPC) est une maladie très contagieuse, spécifique des suidés, qui continue à constituer une menace pour la production porcine malgré un statut indemne de la plupart des pays de l'Union européenne. La PPC est causée par un virus de la famille des Flaviviridae appartenant au genre Pestivirus, en extension depuis les cinq dernières années avec la découverte de nouvelles espèces, notamment chez le porc ou autres animaux de rente dont la proximité génétique avec le virus de la PPC pourrait davantage compliquer le diagnostic de laboratoire. La diversité des formes de la maladie, et notamment la fréquence accrue des formes atténuées et inapparentes liée à une évolution des souches du virus de la PPC vers une réduction de leur virulence, retarde le diagnostic clinique. Ainsi, une longue période peut s'écouler avant la détection d'un foyer, permettant au virus de la PPC de circuler plus longuement, avec le risque de diffuser vers des zones géographiques éloignées des premiers cas d'infection. Les efforts doivent être maintenus en termes de surveillance et de développement d'outils de diagnostic afin de détecter précocement une infection par le virus de la PPC et ainsi limiter la propagation de la maladie et faciliter les mesures de contrôle.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Pestivirus , Suínos , Animais , Peste Suína Clássica/diagnóstico , Peste Suína Clássica/epidemiologia , Peste Suína Clássica/prevenção & controle , Vírus da Febre Suína Clássica/genética , Surtos de Doenças
4.
Virologie (Montrouge) ; 26(5): 387-400, 2022 09 01.
Artigo em Francês | MEDLINE | ID: mdl-36413123

RESUMO

African swine fever (ASF) is a highly pathogenic disease causing haemorrhagic fever in domestic and wild swine. It is responsible for numerous epizootics, particularly in Europe and Asia, causing major economic losses for the pig industry. African Swine Fever virus (ASFV) is the etiological agent responsible for this disease. It is a very large double-stranded DNA virus, encoding for over 150 proteins. Various studies have shown that there is a close relationship between the ability of some viral proteins to inhibit the type I interferon (IFNI) response and the attenuation and virulence processes of ASFV. This review describes the mechanisms of inhibition of the IFN-I response by ASFV proteins, which provide a molecular explanation of how ASFV escapes the innate immune response.


La peste porcine africaine (PPA) est une maladie hautement pathogène causant une fièvre hémorragique chez les suidés domestiques et sauvages. Elle est responsable de nombreuses épizooties notamment en Europe et en Asie, causant de grandes pertes économiques pour la filière porcine. Le virus de la peste porcine africaine (ASFV) est l'agent étiologique responsable de cette maladie. C'est un virus avec un génome à ADN double brin de grande taille, codant pour plus de 150 protéines. Différents travaux ont montré qu'il existe une étroite relation entre la capacité de certaines protéines virales à inhiber la réponse interféron de type I (IFN-I) et les processus d'atténuation et de virulence pour l'ASFV. Cette revue décrit les mécanismes d'inhibition de la réponse IFN-I par les protéines d'ASFV permettant d'expliquer sur le plan moléculaire l'échappement à la réponse immunitaire innée.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Interferon Tipo I , Suínos , Animais , Vírus da Febre Suína Africana/genética , Imunidade Inata/genética , Virulência
5.
Pathogens ; 11(10)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36297164

RESUMO

Aujeszky's disease virus (ADV), also known as pseudorabies virus, causes an important neurological infection with a major economic and health impact on animal husbandry. Here, we serologically screened muscle fluid from wild boar (Sus scrofa) for the presence of anti-ADV antibodies. Animals were caught during two hunting seasons (2019−2020 and 2021−2022) from three areas in southeastern France known to be endemic with wild boar populations. A total of 30.33% of the 399 tested animals scored positive for anti-glycoprotein B antibodies directed against ADV using a commercial competitive ELISA test. A significant effect (p-value < 0.0001) of the geographical location and animal age on ADV seroprevalence was observed. The results of this study confirmed the importance of wild boar in the epidemiology of ADV in southeastern France.

6.
Methods Mol Biol ; 2503: 105-118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35575889

RESUMO

Molecular biology methods are highly sensitive to detect the genome of pathogens and to study their biology. Polymerase chain reaction (PCR) and reverse transcription followed by a polymerase chain reaction (RT-PCR) permit the detection of the presence and the replication of African swine fever virus in soft ticks. Here, we described our techniques to detect and quantify DNA and RNA of African swine fever virus in soft ticks including a housekeeping gene of soft ticks as internal control.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Argasidae , Ornithodoros , Vírus da Febre Suína Africana/genética , Animais , Argasidae/genética , DNA Viral/genética , Ornithodoros/genética , RNA/genética , Suínos
7.
Transbound Emerg Dis ; 68(3): 1190-1204, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32750188

RESUMO

To deal with the limited literature data on the vectorial capacity of blood-feeding arthropods (BFAs) and their role in the transmission of African swine fever virus (ASFV) in Metropolitan France, a dedicated working group of the French Agency for Food, Environmental and Occupational Health & Safety performed an expert knowledge elicitation. In total, 15 different BFAs were selected as potential vectors by the ad hoc working group involved. Ten criteria were considered to define the vectorial capacity: vectorial competence, current abundance, expected temporal abundance, spatial distribution, longevity, biting rate, active dispersal capacity, trophic preferences for Suidae, probability of contact with domestic pigs and probability of contact with wild boar. Fourteen experts participated to the elicitation. For each BFA, experts proposed a score (between 0 and 3) for each of the above criteria with an index of uncertainty (between 1 and 4). Overall, all experts gave a weight for all criteria (by distributing 100 marbles). A global weighted sum of score per BFA was calculated permitting to rank the different BFAs in decreasing order. Finally, a regression tree analysis was used to group those BFAs with comparable likelihood to play a role in ASF transmission. Out of the ten considered criteria, the experts indicated vectorial competence, abundance and biting rate as the most important criteria. In the context of Metropolitan France, the stable fly (Stomoxys calcitrans) was ranked as the most probable BFA to be a vector of ASFV, followed by lice (Haematopinus suis), mosquitoes (Aedes, Culex and Anopheles), Culicoides and Tabanidea. Since scientific knowledge on their vectorial competence for ASF is scarce and associated uncertainty on expert elicitation moderate to high, more studies are however requested to investigate the potential vector role of these BFAs could have in ASFV spread, starting with Stomoxys calcitrans.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana/transmissão , Insetos Vetores , Mosquitos Vetores , Febre Suína Africana/virologia , Animais , Vetores de Doenças , Comportamento Alimentar , França , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia , Muscidae/virologia , Ftirápteros/fisiologia , Sus scrofa/virologia , Suínos , Doenças dos Suínos/virologia
8.
Transbound Emerg Dis ; 68(3): 1541-1549, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32910533

RESUMO

African swine fever (ASF) represents a global threat with huge economic consequences for the swine industry. Even though direct contact is likely to be the main transmission route from infected to susceptible hosts, recent epidemiological investigations have raised questions regarding the role of haematophagous arthropods, in particular the stable fly (Stomoxys calcitrans). In this study, we developed a mechanistic vector-borne transmission model for ASF virus (ASFV) within an outdoor domestic pig farm in order to assess the relative contribution of stable flies to the spread of the virus. The model was fitted to the ecology of the vector, its blood-feeding behaviour and pig-to-pig transmission dynamic. Model outputs suggested that in a context of low abundance (<5 flies per pig), stable flies would play a minor role in the spread of ASFV, as they are expected to be responsible for around 10% of transmission events. However, with abundances of 20 and 50 stable flies per pig, the vector-borne transmission would likely be responsible for almost 30% and 50% of transmission events, respectively. In these situations, time to reach a pig mortality of 10% would be reduced by around 26% and 40%, respectively. The sensitivity analysis emphasized that the expected relative contribution of stable flies was strongly dependent on the volume of blood they regurgitated and the infectious dose for pigs. This study identified crucial knowledge gaps that need to be filled in order to assess more precisely the potential contribution of stable flies to the spread of ASFV, including a quantitative description of the populations of haematophagous arthropods that could be found in pig farms, a better understanding of blood-feeding behaviours of stable flies and the quantification of the probability that stable flies partially fed with infectious blood transmit the virus to a susceptible pig during a subsequent blood-feeding attempt.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/transmissão , Insetos Vetores/virologia , Muscidae/virologia , Febre Suína Africana/virologia , Animais , Modelos Teóricos , Sus scrofa , Suínos
9.
Parasit Vectors ; 13(1): 618, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33298119

RESUMO

BACKGROUND: Several species of soft ticks in genus Ornithodoros are known vectors and reservoirs of African swine fever virus (ASFV). However, the underlying mechanisms of vector competence for ASFV across Ornithodoros species remain to be fully understood. To that end, this study compared ASFV replication and dissemination as well as virus vertical transmission to descendants between Ornithodoros moubata, O. erraticus, and O. verrucosus in relation to what is known about the ability of these soft tick species to transmit ASFV to pigs. To mimic the natural situation, a more realistic model was used where soft ticks were exposed to ASFV by allowing them to engorge on viremic pigs. METHODS: Ornithodoros moubata ticks were infected with the ASFV strains Liv13/33 (genotype I) or Georgia2007/1 (genotype II), O. erraticus with OurT88/1 (genotype I) or Georgia2007/1 (genotype II), and O. verrucosus with Ukr12/Zapo (genotype II), resulting in five different tick-virus pairs. Quantitative PCR (qPCR) assays targeting the VP72 ASFV gene was carried out over several months on crushed ticks to study viral replication kinetics. Viral titration assays were also carried out on crushed ticks 2 months post infection to confirm virus survival in soft ticks. Ticks were dissected. and DNA was individually extracted from the following organs to study ASFV dissemination: intestine, salivary glands, and reproductive organs. DNA extracts from each organ were tested by qPCR. Lastly, larval or first nymph-stage progeny emerging from hatching eggs were tested by qPCR to assess ASFV vertical transmission. RESULTS: Comparative analyses revealed higher rates of ASFV replication and dissemination in O. moubata infected with Liv13/33, while the opposite was observed for O. erraticus infected with Georgia2007/1 and for O. verrucosus with Ukr12/Zapo. Intermediate profiles were found for O. moubata infected with Georgia2007/1 and for O. erraticus with OurT88/1. Vertical transmission occurred efficiently in O. moubata infected with Liv13/33, and at very low rates in O. erraticus infected with OurT88/1. CONCLUSIONS: This study provides molecular data indicating that viral replication and dissemination in Ornithodoros ticks are major mechanisms underlying ASFV horizontal and vertical transmission. However, our results indicate that other determinants beyond viral replication also influence ASFV vector competence. Further research is required to fully understand this process in soft ticks.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana/transmissão , Febre Suína Africana/virologia , Argasidae/virologia , Ornithodoros/virologia , Febre Suína Africana/mortalidade , Vírus da Febre Suína Africana/genética , Animais , Vetores de Doenças , Genoma Viral , Transmissão Vertical de Doenças Infecciosas , Mortalidade , Ninfa , Sus scrofa , Suínos , Carga Viral , Viremia/virologia , Replicação Viral
10.
J Virol Methods ; 285: 113959, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32828806

RESUMO

African swine fever is a febrile hemorrhagic fever disease that is caused by the African swine fever virus (ASFV) and is lethal for domestic pigs and wild boar. ASFV also infects soft ticks of the genus Ornithodoros, some species of which can act as a vector for ASFV. Whole genome sequencing of ASFV is a challenge because, due to the size difference of the host genome versus the viral genome, the higher proportion of host versus virus DNA fragments renders the virus sequencing poorly efficient. A novel approach of DNA enrichment, based on the separation of methylated and un-methylated DNA, has been reported but without an evaluation of its efficacy. In this study, the efficiency of the un-methylated DNA enrichment protocol was evaluated for pig and tick samples infected by ASFV. As expected, fewer reads corresponding to ASFV were found in the methylated fraction compared to the un-methylated fraction. However, the sequencing coverage of the un-methylated fraction was not improved compared to the untreated DNA. In our hands, the ASFV DNA enrichment was inefficient for tick samples and very limited for pig samples. This enrichment process represents extra work and cost without a significant improvement of ASFV genome coverage. The efficiency of this enrichment approach and the cost/benefit ratio are discussed.


Assuntos
Vírus da Febre Suína Africana/isolamento & purificação , Febre Suína Africana/virologia , DNA Viral , Genoma Viral , Sus scrofa/virologia , Sequenciamento Completo do Genoma , Animais , Metilação de DNA , Suínos
11.
Viruses ; 12(7)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32698448

RESUMO

African swine fever (ASF) is one of the most important diseases in Suidae due to its significant health and socioeconomic consequences and represents a major threat to the European pig industry, especially in the absence of any available treatment or vaccine. In fact, with its high mortality rate and the subsequent trade restrictions imposed on affected countries, ASF can dramatically disrupt the pig industry in afflicted countries. In September 2018, ASF was unexpectedly identified in wild boars from southern Belgium in the province of Luxembourg, not far from the Franco-Belgian border. The French authorities rapidly commissioned an expert opinion on the risk of ASF introduction and dissemination into metropolitan France. In Europe, the main transmission routes of the virus comprise direct contact between infected and susceptible animals and indirect transmission through contaminated material or feed. However, the seasonality of the disease in some pig farms in Baltic countries, including outbreaks in farms with high biosecurity levels, have led to questions on the possible involvement of arthropods in the transmission of the virus. This review explores the current body of knowledge on the most common arthropod families present in metropolitan France. We examine their potential role in spreading ASF-by active biological or mechanical transmission or by passive transport or ingestion-in relation to their bio-ecological properties. It also highlights the existence of significant gaps in our knowledge on vector ecology in domestic and wild boar environments and in vector competence for ASFV transmission. Filling these gaps is essential to further understanding ASF transmission in order to thus implement appropriate management measures.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/transmissão , Vetores Artrópodes/virologia , Surtos de Doenças/veterinária , Ecossistema , Sus scrofa/virologia , Febre Suína Africana/epidemiologia , Animais , Vetores Artrópodes/classificação , Vetores Artrópodes/fisiologia , Fazendas , França/epidemiologia , Suínos
12.
Microbiol Resour Announc ; 9(17)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327506

RESUMO

Here, we report the coding-complete genome sequence of African swine fever (ASF) virus strain Liv13/33, isolated from experimentally infected pigs and Ornithodoros moubata ticks. The 11 sequences that we obtained harbored no notable differences to each other, and all of them were closely related to the genome sequence of the Mkuzi 1979 strain of genotype I.

13.
Viruses ; 12(3)2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168820

RESUMO

African swine fever is a highly lethal hemorrhagic fever of Suidae, threatening pig production globally. Suidae can be infected by different ways like ingestion of contaminated feed, direct contact with infected animals or fomites, and biting by infected soft tick bites. As already described, European soft ticks (Ornithodoros erraticus and Ornithodoros verrucosus) were not able to transmit African swine fever virus by biting pigs although these ticks maintained the infectious virus during several months; therefore, the possibility for pigs to become infected through the ingestion of infected ticks was questioned but not already explored. To determine if such oral ingestion is an alternative pathway of transmission, O. erraticus ticks were infected by blood-feeding on a viremic pig infected with the European African swine fever virus strain Georgia2007/1, then frozen at zero and two months post-engorgement, then after, were embedded in the food to pigs. Pig infection was successful, with superior efficiency with ticks frozen just after the infectious blood meal. These results confirmed the potential role of O. erraticus ticks as an ASFV reservoir and demonstrated the efficiency of non-conventional pathways of transmission.


Assuntos
Vírus da Febre Suína Africana/fisiologia , Febre Suína Africana/transmissão , Febre Suína Africana/virologia , Argasidae/virologia , Sus scrofa/virologia , Febre Suína Africana/diagnóstico , Animais , Suínos , Carga Viral
14.
Pathogens ; 9(3)2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121078

RESUMO

Ornithodoros soft ticks are the only known vector and reservoir of the African swine fever virus, a major lethal infectious disease of Suidae. The co-feeding event for virus transmission and maintenance among soft tick populations has been poorly documented. We infected Ornithodorosmoubata, a known tick vector in Africa, with an African swine fever virus strain originated in Africa, to test its ability to infect O.moubata through co-feeding on domestic pigs. In our experimental conditions, tick-to-tick virus transmission through co-feeding failed, although pigs became infected through the infectious tick bite.

15.
Transbound Emerg Dis ; 67(3): 1164-1176, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31821736

RESUMO

In Europe, African swine fever virus (ASFV) is one of the most threatening infectious transboundary diseases of domestic pigs and wild boar. In September 2018, ASF was detected in wild boar in the South of Belgium. France, as a bordering country, is extremely concerned about the ASF situation in Belgium, and an active preparedness is ongoing in the country. One of the questions raised by this situation relates to disturbing activities that may affect wild boar movements and their possible impact on the spread of ASFV. Despite evidence of disturbance related to hunting practices, there is a paucity of information on the impact of forestry and human leisure activities. To assess this impact on wild boar movements, a systematic review was first conducted but very few useful data were obtained. For this reason, an expert elicitation was carried out by the French Agency for Food, Environmental and Occupational Health & Safety in order to deal with this knowledge gap. A total of 30 experts originating from France and adjacent neighbouring countries (Spain, Belgium and Switzerland) were elicited about the relative importance of six factors of spatial disturbance of wild boar (noise, smell, invasion of space, modification of the environment, duration and frequency of the activity). Then, for each factor of disturbance, they were asked about the impact of 16 different commercial forestry and human leisure activities. A global weighted score was estimated in order to capture the variability of a wide range of territorial conditions and the uncertainty of expert elicitation. This estimate permitted ranking all 16 activities and aggregating them in three groups according to their potential for disturbance of wild boar, using a regression tree analysis. The results of this expert elicitation provide a methodological approach that may be useful for French and other European decision makers and stakeholders involved in the crisis management of ASF.


Assuntos
Febre Suína Africana/transmissão , Distribuição Animal , Agricultura Florestal , Atividades de Lazer , Sus scrofa/fisiologia , Vírus da Febre Suína Africana/fisiologia , Animais , Bélgica , Europa (Continente) , França , Espanha , Suínos , Suíça
16.
Pathogens ; 8(4)2019 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-31779166

RESUMO

Pseudorabies (PR), also known as Aujeszky's disease, is an economically important disease for the pig industry. It has been eradicated in domestic pigs in many European countries, including France, but its causative agent-Suid Herpesvirus 1-is still circulating in wild boars. The risk of endemic PR in wild fauna lies in reintroducing the virus among domestic pigs and transmitting it to other mammals, especially hunting dogs for which the disease is rapidly fatal. As such infections are regularly reported in France, this study genetically characterized canine PR virus strains in the country to obtain information on their diversity and evolution. Partial sequencing of the glycoprotein C-encoding gene from 55 virus strains isolated from dogs between 2006 and 2018 showed that 14 strains belonged to genotype I-clade A and another 38 to genotype I-clade B, two clades usually reported in Western Europe. More surprisingly, three strains were found to belong to genotype II, suggesting an Asian origin. Genotype I-clade A strains exhibited the highest diversity as five geographically segregated genogroups were identified.

17.
PLoS One ; 14(11): e0225657, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31774871

RESUMO

African swine fever (ASF) is a lethal hemorrhagic disease in domestic pigs and wild suids caused by African swine fever virus (ASFV), which threatens the swine industry globally. In its native African enzootic foci, ASFV is naturally circulating between soft ticks of the genus Ornithodoros, especially in the O. moubata group, and wild reservoir suids, such as warthogs (Phacochoerus spp.) that are bitten by infected soft ticks inhabiting their burrows. While the ability of some Afrotropical soft ticks to transmit and maintain ASFV is well established, the vector status of Palearctic soft tick species for ASFV strains currently circulating in Eurasia remains largely unknown. For example, the Iberian soft tick O. erraticus is a known vector and reservoir of ASFV, but its ability to transmit different ASFV strains has not been assessed since ASF re-emerged in Europe in 2007. Little is known about vector competence for ASFV in other species, such as O. verrucosus, which occurs in southern parts of Eastern Europe, including Ukraine and parts of Russia, and in the Caucasus. Therefore, we conducted transmission trials with two Palearctic soft tick species, O. erraticus and O. verrucosus, and the Afrotropical species O. moubata. We tested the ability of ticks to transmit virulent ASFV strains, including one of direct African origin (Liv13/33), and three from Eurasia that had been involved in previous (OurT88/1), and the current epizooties (Georgia2007/1 and Ukr12/Zapo). Our experimental results showed that O. moubata was able to transmit the African and Eurasian ASFV strains, whereas O. erraticus and O. verrucosus failed to transmit the Eurasian ASFV strains. However, naïve pigs showed clinical signs of ASF when inoculated with homogenates of crushed O. erraticus and O. verrucosus ticks that fed on viraemic pigs, which proved the infectiousness of ASFV contained in the ticks. These results documented that O. erraticus and O. verrucosus are unlikely to be capable vectors of ASFV strains currently circulating in Eurasia. Additionally, the persistence of infection in soft ticks for several months reaffirms that the infectious status of a given tick species is only part of the data required to assess its vector competence for ASFV.


Assuntos
Vírus da Febre Suína Africana/patogenicidade , Febre Suína Africana/transmissão , Vetores de Doenças , Ornithodoros/virologia , Infestações por Carrapato/veterinária , Viremia/veterinária , Febre Suína Africana/epidemiologia , Febre Suína Africana/virologia , Animais , Europa Oriental/epidemiologia , Feminino , Masculino , Ornithodoros/classificação , Federação Russa/epidemiologia , Suínos , Infestações por Carrapato/virologia , Ucrânia/epidemiologia , Viremia/virologia
18.
Viruses ; 11(9)2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31533244

RESUMO

Animal diseases constitute a continuing threat to animal health, food safety, national economy, and the environment. Among those, African swine fever (ASF) is one of the most devastating viruses affecting pigs and wild suids due to the lack of vaccine or effective treatment. ASF is endemic in countries in sub-Saharan Africa, but since its introduction to the Caucasus region in 2007, a highly virulent strain of ASF virus (ASFV) has continued to circulate and spread into Eastern Europe and Russia, and most recently into Western Europe, China, and various countries of Southeast Asia. Given the importance of this disease, this review will highlight recent discoveries in basic virology with special focus on proteomic analysis, replication cycle, and some recent data on genes involved in cycle progression and viral-host interactions, such as I215L (E2 ubiquitin-conjugating enzyme), EP402R (CD2v), A104R (histone-like protein), QP509L, and Q706L (RNA helicases) or P1192R (Topoisomerase II). Taking into consideration the large DNA genome of ASFV and its complex interactions with the host, more studies and new approaches are to be taken to understand the basic virus-host interaction for ASFV. Proteomic studies are just paving the way for future research.


Assuntos
Vírus da Febre Suína Africana/genética , Febre Suína Africana/virologia , Interações Hospedeiro-Patógeno , Proteômica , RNA Helicases/genética , Febre Suína Africana/epidemiologia , Vírus da Febre Suína Africana/enzimologia , Substituição de Aminoácidos , Animais , Suínos , Proteínas Virais/genética
19.
Sci Rep ; 9(1): 13616, 2019 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-31541124

RESUMO

Most of the microorganisms living in a symbiotic relationship in different animal body sites (microbiota) reside in the gastrointestinal tract (GIT). Several studies have shown that the microbiota is involved in host susceptibilities to pathogens. The fecal microbiota of domestic and wild suids was analyzed. Bacterial communities were determined from feces obtained from domestic pigs (Sus scrofa) raised under different conditions: specific-pathogen-free (SPF) pigs and domestic pigs from the same bred, and indigenous domestic pigs from a backyard farm in Kenya. Secondly, the fecal microbiota composition of the African swine fever (ASF) resistant warthogs (Phacochoerus africanus) from Africa and a European zoo was determined. African swine fever (ASF) is a devastating disease for domestic pigs. African animals showed the highest microbial diversity while the SPF pigs the lowest. Analysis of the core microbiota from warthogs (resistant to ASF) and pigs (susceptible to ASF) showed 45 shared OTUs, while 6 OTUs were exclusively present in resistant animals. These six OTUs were members of the Moraxellaceae family, Pseudomonadales order and Paludibacter, Anaeroplasma, Petrimonas, and Moraxella genera. Further characterization of these microbial communities should be performed to determine the potential involvement in ASF resistance.


Assuntos
Fezes/microbiologia , Suínos/genética , Suínos/microbiologia , Febre Suína Africana/genética , Febre Suína Africana/microbiologia , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Animais , Animais Selvagens/genética , Animais Selvagens/microbiologia , Suscetibilidade a Doenças , Trato Gastrointestinal , Quênia , Microbiota/genética , Sus scrofa/genética , Sus scrofa/microbiologia
20.
Front Vet Sci ; 5: 1, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29417054

RESUMO

Wildlife species as reservoirs of infectious pathogens represent a serious constraint in the implementation of disease management strategies. In the Mediterranean island of Corsica, the dynamics of hepatitis E virus (HEV) and Aujeszky's disease virus (ADV) are suspected to be influenced by interactions between wild and domestic pigs. To improve our understanding of these influences, we first compared the seroprevalences of both viruses in domestic pig populations from different locations with contrasted levels of wild-domestic interactions, ADV vaccination, biosafety, and farm husbandry. Second, we performed an analysis at a more restricted geographical scale, to assess the matching of ADV or HEV prevalence between sympatric wild boar and outdoor pig farms most exposed to interactions with wildlife. Logistic models were adjusted to the observed data. A high seroprevalence of HEV (>80%) and ADV (40%) in pigs, with no significant difference according to the region, confirms that both pathogens are enzootic in Corsica. Vaccination against ADV had a strong protective effect, even when performed voluntarily by farmers. Farm biosafety had an additional effect on pigs' exposure, suggesting that contact between wild boars and pigs were involved in disease transmission. A strong correlation in HEV seroprevalence was observed between pigs and wild boars that were in close contact, and significantly lower seroprevalence was observed in pigs when they had little contact with wild boars due to spatial segregation. These results suggest a regular HEV circulation between sympatric wild boar and domestic pigs. The high HEV seroprevalence observed in domestic pigs (>80%) suggests a spillover of the virus from domestic to wild populations through environmental contamination, but this hypothesis has to be confirmed. Conversely, even though avoiding sows' release on pasture during estrus showed some protecting effect in the free ranging pig farms regarding ADV, ADV seroprevalence was not dependent on the swine populations (wild or domestic) or on the wild-domestic spatial overlap, suggesting two quasi-separate enzootic cycles. This information will prove useful for designing more efficient disease management strategies in Corsica and similar contexts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA