Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1379154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38742102

RESUMO

Imaging mass cytometry (IMC) is a metal mass spectrometry-based method allowing highly multiplex immunophenotyping of cells within tissue samples. However, some limitations of IMC are its 1-µm resolution and its time and costs of analysis limiting respectively the detailed histopathological analysis of IMC-produced images and its application to small selected tissue regions of interest (ROI) of one to few square millimeters. Coupling on a single-tissue section, IMC and histopathological analyses could permit a better selection of the ROI for IMC analysis as well as co-analysis of immunophenotyping and histopathological data until the single-cell level. The development of this method is the aim of the present study in which we point to the feasibility of applying the IMC process to tissue sections previously Alcian blue-stained and digitalized before IMC tissue destructive analyses. This method could help to improve the process of IMC in terms of ROI selection, time of analysis, and the confrontation between histopathological and immunophenotypic data of cells.


Assuntos
Citometria por Imagem , Imunofenotipagem , Coloração e Rotulagem , Coloração e Rotulagem/métodos , Imunofenotipagem/métodos , Citometria por Imagem/métodos , Humanos , Espectrometria de Massas/métodos , Animais , Análise de Célula Única/métodos
2.
Front Immunol ; 14: 1147480, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143660

RESUMO

Persistent inflammation can promote the development of tertiary lymphoid structures (TLS) within tissues resembling secondary lymphoid organs (SLO) such as lymph nodes (LN). The composition of TLS across different organs and diseases could be of pathophysiological and medical interest. In this work, we compared TLS to SLO in cancers of the digestive tract and in inflammatory bowel diseases. Colorectal and gastric tissues with different inflammatory diseases and cancers from the department of pathology of CHU Brest were analyzed based on 39 markers using imaging mass cytometry (IMC). Unsupervised and supervised clustering analyses of IMC images were used to compare SLO and TLS. Unsupervised analyses tended to group TLS per patient but not per disease. Supervised analyses of IMC images revealed that LN had a more organized structure than TLS and non-encapsulated SLO Peyer's patches. TLS followed a maturation spectrum with close correlations between germinal center (GC) markers' evolution. The correlations between organizational and functional markers made relevant the previously proposed TLS division into three stages: lymphoid-aggregates (LA) (CD20+CD21-CD23-) had neither organization nor GC functionality, non-GC TLS (CD20+CD21+CD23-) were organized but lacked GC's functionality and GC-like TLS (CD20+CD21+CD23+) had GC's organization and functionality. This architectural and functional maturation grading of TLS pointed to differences across diseases. TLS architectural and functional maturation grading is accessible with few markers allowing future diagnostic, prognostic, and predictive studies on the value of TLS grading, quantification and location within pathological tissues in cancers and inflammatory diseases.


Assuntos
Neoplasias , Estruturas Linfoides Terciárias , Humanos , Estruturas Linfoides Terciárias/patologia , Prognóstico , Trato Gastrointestinal/patologia , Citometria por Imagem
3.
Front Immunol ; 14: 1072118, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936977

RESUMO

The recent emergence of imaging mass cytometry technology has led to the generation of an increasing amount of high-dimensional data and, with it, the need for suitable performant bioinformatics tools dedicated to specific multiparametric studies. The first and most important step in treating the acquired images is the ability to perform highly efficient cell segmentation for subsequent analyses. In this context, we developed YOUPI (Your Powerful and Intelligent tool) software. It combines advanced segmentation techniques based on deep learning algorithms with a friendly graphical user interface for non-bioinformatics users. In this article, we present the segmentation algorithm developed for YOUPI. We have set a benchmark with mathematics-based segmentation approaches to estimate its robustness in segmenting different tissue biopsies.


Assuntos
Algoritmos , Software , Citometria por Imagem
4.
Front Immunol ; 13: 859414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432353

RESUMO

Imaging mass cytometry (IMC) enables the in situ analysis of in-depth-phenotyped cells in their native microenvironment within the preserved architecture of a single tissue section. To date, it permits the simultaneous analysis of up to 50 different protein- markers targeted by metal-conjugated antibodies. The application of IMC in the field of cancer research may notably help 1) to define biomarkers of prognostic and theragnostic significance for current and future treatments against well-established and novel therapeutic targets and 2) to improve our understanding of cancer progression and its resistance mechanisms to immune system and how to overcome them. In the present article, we not only provide a literature review on the use of the IMC in cancer-dedicated studies but we also present the IMC method and discuss its advantages and limitations among methods dedicated to deciphering the complexity of cancer tissue.


Assuntos
Citometria por Imagem , Neoplasias , Anticorpos , Biomarcadores/análise , Citometria por Imagem/métodos , Prognóstico , Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA