Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 16875, 2021 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-34413357

RESUMO

Several amniote lineages independently evolved multiple rows of marginal teeth in response to the challenge of processing high fiber plant matter. Multiple tooth rows develop via alterations to tooth replacement in captorhinid reptiles and ornithischian dinosaurs, but the specific changes that produce this morphology differ, reflecting differences in their modes of tooth attachment. To further understand the mechanisms by which multiple tooth rows can develop, we examined this feature in Endothiodon bathystoma, a member of the only synapsid clade (Anomodontia) to evolve a multi-rowed marginal dentition. We histologically sampled Endothiodon mandibles with and without multiple tooth rows as well as single-rowed maxillae. We also segmented functional and replacement teeth in µ-CT scanned mandibles and maxillae of Endothiodon and several other anomodonts with 'postcanine' teeth to characterize tooth replacement in the clade. All anomodonts in our sample displayed a space around the tooth roots for a soft tissue attachment between tooth and jaw in life. Trails of alveolar bone indicate varying degrees of labial migration of teeth through ontogeny, often altering the spatial relationships of functional and replacement teeth in the upper and lower jaws. We present a model of multiple tooth row development in E. bathystoma in which labial migration of functional teeth was extensive enough to prevent resorption and replacement by newer generations of teeth. This model represents another mechanism by which multiple tooth rows evolved in amniotes. The multiple tooth rows of E. bathystoma may have provided more extensive contact between the teeth and a triturating surface on the palatine during chewing.


Assuntos
Evolução Biológica , Dentição , Dinossauros/anatomia & histologia , Dente/diagnóstico por imagem , Dente/crescimento & desenvolvimento , Microtomografia por Raio-X , Animais , Filogenia , Erosão Dentária/patologia
2.
Proc Biol Sci ; 288(1956): 20211391, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34375553

RESUMO

Snake fangs are an iconic exemplar of a complex adaptation, but despite striking developmental and morphological similarities, they probably evolved independently in several lineages of venomous snakes. How snakes could, uniquely among vertebrates, repeatedly evolve their complex venom delivery apparatus is an intriguing question. Here we shed light on the repeated evolution of snake venom fangs using histology, high-resolution computed tomography (microCT) and biomechanical modelling. Our examination of venomous and non-venomous species reveals that most snakes have dentine infoldings at the bases of their teeth, known as plicidentine, and that in venomous species, one of these infoldings was repurposed to form a longitudinal groove for venom delivery. Like plicidentine, venom grooves originate from infoldings of the developing dental epithelium prior to the formation of the tooth hard tissues. Derivation of the venom groove from a large plicidentine fold that develops early in tooth ontogeny reveals how snake venom fangs could originate repeatedly through the co-option of a pre-existing dental feature even without close association to a venom duct. We also show that, contrary to previous assumptions, dentine infoldings do not improve compression or bending resistance of snake teeth during biting; plicidentine may instead have a role in tooth attachment.


Assuntos
Mordeduras e Picadas , Dente , Animais , Epitélio , Venenos de Serpentes , Serpentes
3.
J Anat ; 238(5): 1156-1178, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33372719

RESUMO

Squamates present a unique challenge to the homology and evolution of tooth attachment tissues. Their stereotypically pleurodont teeth are fused in place by a single "bone of attachment", with seemingly dubious homology to the three-part tooth attachment system of mammals and crocodilians. Despite extensive debate over the interpretations of squamate pleurodonty, its phylogenetic significance, and the growing evidence from fossil amniotes for the homology of tooth attachment tissues, few studies have defined pleurodonty on histological grounds. Using a sample of extant squamate teeth that we organize into three broad categories of implantation, we investigate the histological and developmental properties of their dental tissues in multiple planes of section. We use these data to demonstrate the specific soft- and hard-tissue features of squamate teeth that produce their disparate tooth implantation modes. In addition, we describe cementum, periodontal ligaments, and alveolar bone in pleurodont squamates, dental tissues that were historically thought to be restricted to extant mammals and crocodilians. Moreover, we show how the differences between pleurodonty and thecodonty do not relate to the identity of the tooth attachment tissues, but rather the arrangements of homologous tissues around the teeth.


Assuntos
Evolução Biológica , Lagartos/anatomia & histologia , Dente/crescimento & desenvolvimento , Animais , Ligamento Periodontal/anatomia & histologia , Filogenia
4.
J Fish Biol ; 98(4): 1196-1201, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33249600

RESUMO

We explored patterns, rates and unexpected socio-ecological consequences of tooth replacement in serrasalmids and characids of the Peruvian Amazon using microcomputed tomography. Of 24 specimens collected in February 2019, representing a mix of red-bellied piranha Pygocentrus nattereri, redeye piranha Serrasalmus rhombeus, silver dollar fish Ctenobrycon hauxwellianus and mojara Astyanax abramis, six individuals possessed edentulous jaw quadrants. On average, 22.9% of fish collected per day from these species featured incomplete dentition, a value three to five times higher than anticipated based on replacement rates estimated from captive fish, differences that may be driven by ontogeny, seasonality or environmental quality.


Assuntos
Characidae/fisiologia , Pesqueiros , Dente/fisiologia , Animais , Peru , Especificidade da Espécie , Microtomografia por Raio-X
5.
PeerJ ; 8: e9168, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32440377

RESUMO

Permian bolosaurid parareptiles are well-known for having complex tooth crowns and complete tooth rows in the jaws, in contrast to the comparatively simple teeth and frequent replacement gaps in all other Paleozoic amniotes. Analysis of the specialized dentition of the bolosaurid parareptiles Bolosaurus from North America and Belebey from Russia, utilizing a combination of histological and tomographic data, reveals unusual patterns of tooth development and replacement. The data confirm that bolosaurid teeth have thecodont implantation with deep roots, the oldest known such example among amniotes, and independently evolved among much younger archosauromorphs (including dinosaurs and crocodilians) and among synapsids (including mammals). High-resolution CT scans were able to detect the density boundary between the alveolar bone and the jawbone, as confirmed by histology, and revealed the location and size of developing replacement teeth in the pulp cavity of functional teeth. Evidence provided by the paratype dentary of Belebey chengi indicates that replacement teeth are present along the whole tooth row at slightly different stages of development, with the ontogenetically more developed teeth anteriorly, suggesting that tooth replacement was highly synchronized. CT data also show tooth replacement is directly related to the presence of lingual pits in the jaw, and that migration of tooth buds occurs initially close to these resorption pits to a position immediately below the functional tooth within its pulp cavity. The size and complex shape of the replacement teeth in the holotype of Bolosaurus grandis indicate that the replacement teeth can develop within the pulp cavity to an advanced stage while the previous generation remains functional for an extended time, reminiscent of the condition seen in other amniotes with occluding dentitions, including mammals.

6.
Nat Commun ; 11(1): 2240, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32382025

RESUMO

Rare occurrences of dinosaurian embryos are punctuated by even rarer preservation of their development. Here we report on dental development in multiple embryos of the Early Jurassic Lufengosaurus from China, and compare these to patterns in a hatchling and adults. Histology and CT data show that dental formation and development occurred early in ontogeny, with several cycles of tooth development without root resorption occurring within a common crypt prior to hatching. This differs from the condition in hatchling and adult teeth of Lufengosaurus, and is reminiscent of the complex dentitions of some adult sauropods, suggesting that their derived dental systems likely evolved through paedomorphosis. Ontogenetic changes in successive generations of embryonic teeth of Lufengosaurus suggest that the pencil-like teeth in many sauropods also evolved via paedomorphosis, providing a mechanism for the convergent evolution of small, structurally simple teeth in giant diplodocoids and titanosaurids. Therefore, such developmental perturbations, more commonly associated with small vertebrates, were likely also essential events in sauropod evolution.


Assuntos
Dentição , Dinossauros , Fósseis , Animais , Evolução Biológica , Filogenia
7.
Curr Biol ; 30(12): 2374-2378.e4, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32413302

RESUMO

Lateralized behaviors have been reported in a variety of extant vertebrates, including birds and reptiles [1-3] and non-human mammals [4-6]. However, evidence of lateralized behaviors in extinct vertebrates is rare, primarily because of the difficulty of identifying such behaviors with confidence in fossils. In rare instances, paleontologists can infer asymmetry in predatory or foraging behavior, including predation scars on trilobites [7], directionality of invertebrate traces [8], and even behavioral asymmetry in fossil non-human primates [9, 10]. Because lateralized behaviors have been linked to hemispheric (brain) lateralization in some vertebrates [11-15], evidence of lateralized behaviors in ancient vertebrates might yield clues about the evolutionary origins of vertebrate brain lateralization. Here, we show the earliest evidence of lateralized behavior in a fossil reptile based on repeatable observations of tooth wear in a large sample of intact jaws. The patterns of dental wear along the tooth rows of nearly one hundred jaws of the small, early Permian (289 million years ago) reptile Captorhinus aguti indicate that it exhibited lateralized behavior, preferring to feed using the right side of the jaw. Discovery of such a feeding behavior in this ancient, terrestrial, and omnivorous animal provides direct evidence of the deep history of directional behavior among amniotes and may indicate an early origin of brain lateralization.


Assuntos
Comportamento Alimentar , Fósseis/anatomia & histologia , Lateralidade Funcional , Répteis/fisiologia , Animais , Evolução Biológica , Répteis/anatomia & histologia , Dente/anatomia & histologia
8.
Sci Rep ; 10(1): 7184, 2020 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-32346053

RESUMO

The early Permian mesosaurs were the first amniotes to re-invade aquatic environments. One of their most controversial and puzzling features is their distinctive caudal anatomy, which has been suggested as a mechanism to facilitate caudal autotomy. Several researchers have described putative fracture planes in mesosaur caudal vertebrae - unossified regions in the middle of caudal vertebral centra - that in many extant squamates allow the tail to separate and the animal to escape predation. However, the reports of fracture planes in mesosaurs have never been closely investigated beyond preliminary descriptions, which has prompted scepticism. Here, using numerous vertebral series, histology, and X-ray computed tomography, we provide a detailed account of fracture planes in all three species of mesosaurs. Given the importance of the tail for propulsion in many other aquatic reptiles, the identification of fracture planes in mesosaurs has important implications for their aquatic locomotion. Despite mesosaurs apparently having the ability to autotomize their tail, it is unlikely that they actually made use of this behaviour due to a lack of predation pressure and no record of autotomized tails in articulated specimens. We suggest that the presence of fracture planes in mesosaurs is an evolutionary relic and could represent a synapomorphy for an as-yet undetermined terrestrial clade of Palaeozoic amniotes that includes the earliest radiation of secondarily aquatic tetrapods.


Assuntos
Dinossauros/anatomia & histologia , Coluna Vertebral/anatomia & histologia , Animais , Cauda/anatomia & histologia
9.
Curr Biol ; 30(9): 1755-1761.e2, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32220319

RESUMO

Mammals and reptiles have evolved divergent adaptations for processing abrasive foods. Mammals have occluding, diphyodont dentitions with taller teeth (hypsodonty), more complex occlusal surfaces, continuous tooth eruption, and forms of prismatic enamel that prolong the functional life of each tooth [1, 2]. The evolution of prismatic enamel in particular was a key innovation that made individual teeth more resilient to abrasion in early mammals [2-4]. In contrast, reptiles typically have thin, non-prismatic enamel, and shearing, polyphyodont dentitions with multi-cusped or serrated tooth crowns, multiple tooth rows, rapid tooth replacement rates, or batteries made of hundreds of teeth [5-9]. However, there are rare cases where reptiles have evolved alternative solutions to cope with abrasive diets. Here, we show that the combined effects of herbivory and an ancestral loss of tooth replacement in a lineage of extinct herbivorous sphenodontians, distant relatives of the modern tuatara (Sphenodon punctatus) [10], are associated with the evolution of wear-resistant and highly complex teeth. Priosphenodon avelasi, an extinct sphenodontian from the Cretaceous of Argentina, possesses a unique cone-in-cone dentition with overlapping generations of teeth forming a densely packed tooth file. Each tooth is anchored to its predecessor via a rearrangement of dental tissues that results in a novel enamel-to-bone tooth attachment. Furthermore, the compound occlusal surfaces, thickened enamel, and the first report of prismatic enamel in a sphenodontian are convergent strategies with those in some mammals, challenging the perceived simplicity of acrodont dentitions [11-15] and showcasing the reptilian capacity to produce complex and unusual dentitions.


Assuntos
Esmalte Dentário/anatomia & histologia , Fósseis , Répteis/anatomia & histologia , Dente/anatomia & histologia , Animais , Argentina
10.
J Anat ; 236(4): 668-687, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31903561

RESUMO

The development of the iliosacral joint (ISJ) in tetrapods represented a crucial step in the evolution of terrestrial locomotion. This structure is responsible for transferring forces between the vertebral column and appendicular skeleton, thus supporting the bodyweight on land. However, most research dealing with the water-to-land transition and biomechanical studies in general has focused exclusively on the articulation between the pelvic girdle and femur. Our knowledge about the contact between the pelvic girdle and vertebral column (i.e. the ISJ) at a tissue level is restricted so far to human anatomy, with little to no information available on other tetrapods. This lack of data limits our understanding of the development and evolution of such a key structure, and thus on the pattern and processes of the evolution of terrestrial locomotion. Therefore, we investigated the macro- and microanatomy of the ISJ in limb-bearing squamates that, similar to most non-mammalian, non-avian tetrapods, possess only two sacral ribs articulating with the posterior process of the ilium. Using a combination of osteology, micro-computed tomography and histology, we collected data on the ISJ apparatus of numerous specimens, sampling different taxa and different ontogenetic stages. Osteologically, we recorded consistent variability in all three processes of the ilium (preacetabular, supracetabular and posterior) and sacral ribs that correlate with posture and locomotion. The presence of a cavity between the ilium and sacral ribs, abundant articular cartilage and fibrocartilage, and a surrounding membrane of dense fibrous connective tissue allowed us to define this contact as a synovial joint. By comparison, the two sacral ribs are connected to each other mostly by dense fibrous tissue, with some cartilage found more distally along the margins of the two ribs, defining this joint as a combination of a syndesmosis and synchondrosis. Considering the intermediary position of the ISJ between the axial and appendicular skeletons, the shape of the articular surfaces of the sacral ribs and ilium, and the characteristics of the muscles associated with this structure, we argue that the mobility of the ISJ is primarily driven by the movements of the hindlimb during locomotion. We hypothesize that limited torsion of the ilium at the ISJ happens when the hip is abducted, and the joint is likely able to absorb the compressional and extensional forces related to the protraction and retraction of the femur. The mix of fibres and cartilage between the two sacral ribs instead serves primarily as a shock absorber, with the potential for limited vertical translation during locomotion.


Assuntos
Cartilagem Articular/anatomia & histologia , Ílio/anatomia & histologia , Lagartos/anatomia & histologia , Sacro/anatomia & histologia , Animais , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/fisiologia , Ílio/diagnóstico por imagem , Ílio/fisiologia , Lagartos/fisiologia , Locomoção/fisiologia , Sacro/diagnóstico por imagem , Sacro/fisiologia , Microtomografia por Raio-X
11.
Front Physiol ; 9: 1630, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30519190

RESUMO

Teeth and dentitions contain many morphological characters which give them a particularly important weight in comparative anatomy, systematics, physiology and ecology. As teeth are organs that contain the hardest mineralized tissues vertebrates can produce, their fossil remains are abundant and the study of their anatomy in fossil specimens is of major importance in evolutionary biology. Comparative anatomy has long favored studies of dental characters rather than features associated with tooth attachment and implantation. Here we review a large part of the historical and modern work on the attachment, implantation and replacement of teeth in Amniota. We propose synthetic definitions or redefinitions of most commonly used terms, some of which have led to confusion and conflation of terminology. In particular, there has long been much conflation between dental implantation that strictly concerns the geometrical aspects of the tooth-bone interface, and the nature of the dental attachment, which mostly concerns the histological features occurring at this interface. A second aim of this work was to evaluate the diversity of tooth attachment, implantation and replacement in extant and extinct amniotes in order to derive hypothetical evolutionary trends in these different dental traits over time. Continuous dental replacement prevails within amniotes, replacement being drastically modified only in Mammalia and when dental implantation is acrodont. By comparison, dental implantation frequently and rapidly changes at various taxonomic scales and is often homoplastic. This contrasts with the conservatism in the identity of the tooth attachment tissues (cementum, periodontal ligament, and alveolar bone), which were already present in the earliest known amniotes. Because the study of dental attachment requires invasive histological investigations, this trait is least documented and therefore its evolutionary history is currently poorly understood. Finally, it is essential to go on collecting data from all groups of amniotes in order to better understand and consequently better define dental characters.

12.
Proc Biol Sci ; 285(1890)2018 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-30404877

RESUMO

The mammalian dentition is uniquely characterized by a combination of precise occlusion, permanent adult teeth and a unique tooth attachment system. Unlike the ankylosed teeth in most reptiles, mammal teeth are supported by a ligamentous tissue that suspends each tooth in its socket, providing flexible and compliant tooth attachment that prolongs the life of each tooth and maintains occlusal relationships. Here we investigate dental ontogeny through histological examination of a wide range of extinct synapsid lineages to assess whether the ligamentous tooth attachment system is unique to mammals and to determine how it evolved. This study shows for the first time that the ligamentous tooth attachment system is not unique to crown mammals within Synapsida, having arisen in several non-mammalian therapsid clades as a result of neoteny and progenesis in dental ontogeny. Mammalian tooth attachment is here re-interpreted as a paedomorphic condition relative to the ancestral synapsid form of tooth attachment.


Assuntos
Evolução Biológica , Dentição , Mamíferos/anatomia & histologia , Répteis/anatomia & histologia , Dente/anatomia & histologia , Animais , Mamíferos/crescimento & desenvolvimento , Répteis/crescimento & desenvolvimento , Dente/crescimento & desenvolvimento
13.
PLoS One ; 13(11): e0205206, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30403689

RESUMO

The great diversity of dinosaurian tooth shapes and sizes, and in particular, the amazing dental complexity in derived ornithischians has attracted a lot of attention. However, the evolution of dental batteries in hadrosaurids and ceratopsids is difficult to understand without a broader comparative framework. Here we describe tooth histology and development in the "middle" Cretaceous ornithischian dinosaur Changchunsaurus parvus, a small herbivore that has been characterized as an early ornithopod, or even as a more basal ornithischian. We use this taxon to show how a "typical" ornithischian dentition develops, copes with wear, and undergoes tooth replacement. Although in most respects the histological properties of their teeth are similar to those of other dinosaurs, we show that, as in other more derived ornithischians, in C. parvus the pulp chamber is not invaded fully by the newly developing replacement tooth until eruption is nearly complete. This allowed C. parvus to maintain an uninterrupted shearing surface along a single tooth row, while undergoing continuous tooth replacement. Our histological sections also show that the replacement foramina on the lingual surfaces of the jaws are likely the entry points for an externally placed dental lamina, a feature found in many other ornithischian dinosaurs. Surprisingly, our histological analysis also revealed the presence of wavy enamel, the phylogenetically earliest occurrence of this type of tissue. This contradicts previous interpretations that this peculiar type of enamel arose in association with more complex hadrosauroid dentitions. In view of its early appearance, we suggest that wavy enamel may have evolved in association with a shearing-type dentition in a roughly symmetrically-enameled crown, although its precise function still remains somewhat of a mystery.


Assuntos
Amelogênese , Dinossauros , Fósseis , Odontogênese , Dente , Animais , Esmalte Dentário/citologia , Esmalte Dentário/ultraestrutura , Dinossauros/anatomia & histologia , Dente/citologia , Dente/crescimento & desenvolvimento , Dente/ultraestrutura
14.
J Morphol ; 279(5): 616-625, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29399866

RESUMO

The transparency of soft tissue in Xenopus laevis tadpoles and the anterior-posterior orientation of their developing tooth germs in the upper jaw offer a unique opportunity for the in vivo charting of the first 15-20 days of the developing dentition. Twenty-two X. laevis tadpoles were anesthetized daily and their mouths opened to record the first appearance, position, and development of tooth germs in the upper jaw. The initiation patterns revealed considerable variability between animals, and even between the jaw quadrants in the same animal. This variability appears within a structural boundary and the results are consistent with the presence of an odontogenic band. The final length of dental rows far exceeded the jaw growth for each quadrant during the recording period. This in vivo investigation underlines the limits of cross-sectional studies, and in particular the assumption that tooth germs initiate at the same position in the dental row. The tooth germ initiation patterns in this study did not align with the predictions of standard models for the development of the dentition-Zahnreihen, Clone, and New Progress Zone theories.


Assuntos
Odontogênese/fisiologia , Germe de Dente/crescimento & desenvolvimento , Dente/crescimento & desenvolvimento , Animais , Estudos Transversais , Dentição , Larva , Xenopus laevis
15.
J Anat ; 232(3): 371-382, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29210080

RESUMO

Continuous tooth replacement is common for tetrapods, but some groups of acrodont lepidosaurs have lost the ability to replace their dentition (monophyodonty). Acrodonty, where the tooth attaches to the apex of the jawbone, is an unusual form of tooth attachment that has been associated with the highly autapomorphic condition of monophyodonty. Beyond Lepidosauria, very little is known about the relationship between acrodonty and monophyodonty in other amniotes. We test for this association with a detailed study of the dentition of Opisthodontosaurus, an unusual Early Permian captorhinid eureptile with acrodont dentition. We provide clear evidence, both histological and morphological, that there were regular tooth replacement events in the lower jaw of Opisthodontosaurus, similar to its captorhinid relatives. Thus, our study of the oldest known amniote with an acrodont dentition shows that acrodonty does not inhibit tooth replacement, and that many of the characteristics assigned to lepidosaurian acrodonty are actually highly derived features of lepidosaurs that have resulted secondarily from a lack of tooth replacement. In the context of reptilian dental evolution, we propose the retention of the simple definition of acrodonty, which only pertains to the relative position of the tooth at the apex of the jaw, where the jaw possesses equal lingual and labial walls. This definition of implantation therefore focuses solely on the spatial relationship between the tooth and the jawbone, and separates this relationship from tooth development and replacement.


Assuntos
Evolução Biológica , Odontogênese , Répteis , Dente , Animais , Dentição , Fósseis
16.
Sci Rep ; 7(1): 15787, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29150664

RESUMO

The first histological study of an entire hadrosaurid dental battery provides a comprehensive look at tooth movement within this complex structure. Previous studies have focused on isolated teeth, or in-situ batteries, but this is the first study to examine an entire dental battery of any dinosaur. The absence of direct tooth-to-tooth contact across the entire battery and a unique arrangement of the dental tissues in hadrosaurids led us to compare their teeth with the ever-growing incisors of mammals. The similarity in the distributions of tissues along the incisor, coupled with continuous eruption, make for helpful comparisons to hadrosaurid teeth. The mammalian ever-growing incisor can be used as a model to extrapolate the soft tissue connections and eruptive mechanisms within the hadrosaurid dental battery. Serial sections across the adult dental battery reveal signs of gradual ontogenetic tooth migration. Extensive remodeling of the alveolar septa and the anteroposterior displacement of successive generations of teeth highlight the gradual migration of tooth generations within the battery. These eruptive and ontogenetic tooth movements would not be possible without a ligamentous connection between successive teeth and the jaws, underscoring the dynamic nature of one of the most unique and complex dental systems in vertebrate history.


Assuntos
Dinossauros/anatomia & histologia , Dente/citologia , Processo Alveolar/anatomia & histologia , Animais , Extinção Biológica , Processamento de Imagem Assistida por Computador , Ligamento Periodontal/citologia , Migração de Dente , Reabsorção de Dente/patologia
17.
J Anat ; 231(6): 869-885, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28901023

RESUMO

Squamates present a unique challenge to our understanding of dental evolution in amniotes because they are the only extant tooth-bearing group for which a ligamentous tooth attachment is considered to be absent. This has led to the assumption that mammals and crocodilians have convergently evolved a ligamentous tooth attachment, composed of root cementum, periodontal ligament, and alveolar bone, whereas squamates are thought to possess a single bone of attachment tissue that fuses teeth to the jaws. The identity and homology of tooth attachment tissues between squamates, crocodilians, and mammals have thus been a focal point of debate for decades. We provide a novel interpretation of the mineralized attachment tissues in two focal taxa in this debate, mosasaurids and snakes, and compare dental tissue histology with that of the extant crocodilian Caiman sclerops. We identify a periodontal ligament in these squamates that usually exists temporarily as a soft connective tissue anchoring each tooth to the alveolar bone. We also identify two instances where complete calcification of the periodontal ligament does not occur: in a durophagous mosasaur, and in the hinged teeth of fossil and modern snakes. We propose that the periodontal ligament rapidly calcifies in the majority of mosasaurids and snakes, ankylosing the tooth to the jaw. This gives the appearance of a single, bone-like tissue fusing the tooth to the jaw in ankylosed teeth, but is simply the end stage of dental tissue ontogeny in most snakes and mosasaurids.


Assuntos
Calcificação Fisiológica/fisiologia , Ligamento Periodontal/anatomia & histologia , Répteis/anatomia & histologia , Serpentes/anatomia & histologia , Dente/anatomia & histologia , Animais , Fósseis/anatomia & histologia , Arcada Osseodentária/anatomia & histologia
18.
BMC Evol Biol ; 16: 152, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27465802

RESUMO

BACKGROUND: Hadrosaurid dinosaurs, dominant Late Cretaceous herbivores, possessed complex dental batteries with up to 300 teeth in each jaw ramus. Despite extensive interest in the adaptive significance of the dental battery, surprisingly little is known about how the battery evolved from the ancestral dinosaurian dentition, or how it functioned in the living organism. We undertook the first comprehensive, tissue-level study of dental ontogeny in hadrosaurids using several intact maxillary and dentary batteries and compared them to sections of other archosaurs and mammals. We used these comparisons to pinpoint shifts in the ancestral reptilian pattern of tooth ontogeny that allowed hadrosaurids to form complex dental batteries. RESULTS: Comparisons of hadrosaurid dental ontogeny with that of other amniotes reveals that the ability to halt normal tooth replacement and functionalize the tooth root into the occlusal surface was key to the evolution of dental batteries. The retention of older generations of teeth was driven by acceleration in the timing and rate of dental tissue formation. The hadrosaurid dental battery is a highly modified form of the typical dinosaurian gomphosis with a unique tooth-to-tooth attachment that permitted constant and perfectly timed tooth eruption along the whole battery. CONCLUSIONS: We demonstrate that each battery was a highly dynamic, integrated matrix of living replacement and, remarkably, dead grinding teeth connected by a network of ligaments that permitted fine scale flexibility within the battery. The hadrosaurid dental battery, the most complex in vertebrate evolution, conforms to a surprisingly simple evolutionary model in which ancestral reptilian tissue types were redeployed in a unique manner. The hadrosaurid dental battery thus allows us to follow in great detail the development and extended life history of a particularly complex food processing system, providing novel insights into how tooth development can be altered to produce complex dentitions, the likes of which do not exist in any living vertebrate.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Dente/anatomia & histologia , Animais , Fósseis/anatomia & histologia , Odontogênese , Dente/crescimento & desenvolvimento
19.
J Morphol ; 277(7): 916-24, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27087142

RESUMO

Studies of dinosaur teeth have focused primarily on external crown morphology and thus, use shed or in situ tooth crowns, and are limited to the enamel and dentine dental tissues. As a result, the full suites of periodontal tissues that attach teeth to the jaws remain poorly documented, particularly in early dinosaurs. These tissues are an integral part of the tooth and thus essential to a more complete understanding of dental anatomy, development, and evolution in dinosaurs. To identify the tooth attachment tissues in early dinosaurs, histological thin sections were prepared from the maxilla and dentary of a partial skull of the early theropod Coelophysis bauri from the Upper Triassic (Rhaetian- 209-201 Ma) Whitaker Quarry, New Mexico, USA. As one of the phylogenetically and geologically oldest dinosaurs, it is an ideal candidate for examining dental tissues near the base of the dinosaurian clade. The teeth of C. bauri exhibited a fibrous tooth attachment in which the teeth possessed five tissues: enamel, dentine, cementum, periodontal ligament (PDL), and alveolar bone. Our findings, coupled with those of more recent studies of ornithischian teeth, indicate that a tripartite periodontium, similar to that of crocodilians and mammals, is the plesiomorphic condition for dinosaurs. The occurrence of a tripartite periodontium in dinosaurs adds to the growing consensus that the presence of these tissues is the plesiomorphic condition for the major amniote clades. Furthermore, this study establishes the relative timing of tissue development and growth directions of periodontal tissues and provides the first comparative framework for future studies of dinosaur periodontal development, tooth replacement, and histology. J. Morphol. 277:916-924, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Dente/anatomia & histologia , Jacarés e Crocodilos/anatomia & histologia , Animais , Dinossauros/classificação , Filogenia , Crânio/anatomia & histologia
20.
J Clin Periodontol ; 43(4): 323-32, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26743267

RESUMO

AIM: Dental ankylosis is a rare pathological condition in mammals, however, it is prevalent in their extinct relatives, the stem mammals. This study seeks to compare the mineralized state of the periodontal attachment apparatus between stem and crown mammals and discuss its implications for the evolution of non-mineralized periodontal attachment in crown mammals, including humans. MATERIALS AND METHODS: Thin sections of a fossil mammal and three stem mammals were compared to reconstruct periodontal tissue development across distantly related lineages. RESULTS: Comparisons revealed that the extinct relatives of mammals possessed the same periodontal tissues as those in mammals, albeit in different arrangements. The ankylotic condition in stem mammals was achieved through extensive alveolar bone deposition, which eventually contacted the root cementum, thus forming a calcified periodontal ligament. CONCLUSIONS: Dental ankylosis was part of the normal development of the stem mammal periodontium for millions of years prior to the evolution of a permanent gomphosis in mammals. Mammals may have evolved a permanent gomphosis by delaying the processes that produced dental ankylosis in stem mammals. Pathological ankylosis may represent a reversion to the ancestral condition, which now only forms via advanced ageing and pathology.


Assuntos
Cemento Dentário , Periodonto , Animais , Homeostase , Humanos , Mamíferos , Mandíbula , Minerais , Ligamento Periodontal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA