Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Antimicrob Agents ; 63(5): 107112, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38367843

RESUMO

The control and elimination of malaria caused by Plasmodium vivax is hampered by the threat of relapsed infection resulting from the activation of dormant hepatic hypnozoites. Currently, only the 8-aminoquinolines, primaquine and tafenoquine, have been approved for the elimination of hypnozoites, although their use is hampered by potential toxicity. Therefore, an alternative radical curative drug that safely eliminates hypnozoites is a pressing need. This study assessed the potential hypnozoiticidal activity of the antibiotic azithromycin, which is thought to exert antimalarial activity by inhibiting prokaryote-like ribosomal translation within the apicoplast, an indispensable organelle. The results show that azithromycin inhibited apicoplast development during liver-stage schizogony in P. vivax and Plasmodium cynomolgi, leading to impaired parasite maturation. More importantly, this study found that azithromycin is likely to impair the hypnozoite's apicoplast, resulting in the loss of this organelle. Subsequently, using a recently developed long-term hepatocyte culture system, this study found that this loss likely induces a delay in the hypnozoite activation rate, and that those parasites that do proceed to schizogony display liver-stage arrest prior to differentiating into hepatic merozoites, thus potentially preventing relapse. Overall, this work provides evidence for the potential use of azithromycin for the radical cure of relapsing malaria, and identifies apicoplast functions as potential drug targets in quiescent hypnozoites.


Assuntos
Antimaláricos , Apicoplastos , Azitromicina , Fígado , Plasmodium cynomolgi , Plasmodium vivax , Azitromicina/farmacologia , Plasmodium vivax/efeitos dos fármacos , Plasmodium cynomolgi/efeitos dos fármacos , Antimaláricos/farmacologia , Fígado/parasitologia , Fígado/efeitos dos fármacos , Apicoplastos/efeitos dos fármacos , Animais , Hepatócitos/parasitologia , Hepatócitos/efeitos dos fármacos , Humanos , Biogênese de Organelas , Malária Vivax/parasitologia , Malária Vivax/tratamento farmacológico , Camundongos , Malária/parasitologia , Malária/tratamento farmacológico
2.
Nat Biomed Eng ; 7(9): 1142-1155, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37679570

RESUMO

Inducing antigen-specific tolerance during an established immune response typically requires non-specific immunosuppressive signalling molecules. Hence, standard treatments for autoimmunity trigger global immunosuppression. Here we show that established antigen-specific responses in effector T cells and memory T cells can be suppressed by a polymer glycosylated with N-acetylgalactosamine (pGal) and conjugated to the antigen via a self-immolative linker that allows for the dissociation of the antigen on endocytosis and its presentation in the immunoregulatory environment. We show that pGal-antigen therapy induces antigen-specific tolerance in a mouse model of experimental autoimmune encephalomyelitis (with programmed cell-death-1 and the co-inhibitory ligand CD276 driving the tolerogenic responses), as well as the suppression of antigen-specific responses to vaccination against a DNA-based simian immunodeficiency virus in non-human primates. Our findings show that pGal-antigen therapy invokes mechanisms of immune tolerance to resolve antigen-specific inflammatory T-cell responses and suggest that the therapy may be applicable across autoimmune diseases.


Assuntos
Encefalomielite Autoimune Experimental , Tolerância Imunológica , Animais , Camundongos , Autoimunidade , Glicosilação , Acetilgalactosamina , Encefalomielite Autoimune Experimental/terapia
3.
PLoS Pathog ; 19(8): e1011532, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37531329

RESUMO

The COVID-19 pandemic represents a global challenge that has impacted and is expected to continue to impact the lives and health of people across the world for the foreseeable future. The rollout of vaccines has provided highly anticipated relief, but effective therapeutics are required to further reduce the risk and severity of infections. Monoclonal antibodies have been shown to be effective as therapeutics for SARS-CoV-2, but as new variants of concern (VoC) continue to emerge, their utility and use have waned due to limited or no efficacy against these variants. Furthermore, cumbersome systemic administration limits easy and broad access to such drugs. As well, concentrations of systemically administered antibodies in the mucosal epithelium, a primary site of initial infection, are dependent on neonatal Fc receptor mediated transport and require high drug concentrations. To reduce the viral load more effectively in the lung, we developed an inhalable formulation of a SARS-CoV-2 neutralizing antibody binding to a conserved epitope on the Spike protein, ensuring pan-neutralizing properties. Administration of this antibody via a vibrating mesh nebulization device retained antibody integrity and resulted in effective distribution of the antibody in the upper and lower respiratory tract of non-human primates (NHP). In comparison with intravenous administration, significantly higher antibody concentrations can be obtained in the lung, resulting in highly effective reduction in viral load post SARS-CoV-2 challenge. This approach may reduce the barriers of access and uptake of antibody therapeutics in real-world clinical settings and provide a more effective blueprint for targeting existing and potentially emerging respiratory tract viruses.


Assuntos
Antivirais , COVID-19 , Animais , Humanos , SARS-CoV-2 , Pandemias , Anticorpos Antivirais , Anticorpos Neutralizantes , Epitopos , Glicoproteína da Espícula de Coronavírus
4.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36865310

RESUMO

After clean drinking water, vaccination is the most impactful global health intervention. However, development of new vaccines against difficult-to-target diseases is hampered by the lack of diverse adjuvants for human use. Of particular interest, none of the currently available adjuvants induce Th17 cells. Here, we develop and test an improved liposomal adjuvant, termed CAF®10b, that incorporates a TLR-9 agonist. In a head-to-head study in non-human primates (NHPs), immunization with antigen adjuvanted with CAF®10b induced significantly increased antibody and cellular immune responses compared to previous CAF® adjuvants, already in clinical trials. This was not seen in the mouse model, demonstrating that adjuvant effects can be highly species specific. Importantly, intramuscular immunization of NHPs with CAF®10b induced robust Th17 responses that were observed in circulation half a year after vaccination. Furthermore, subsequent instillation of unadjuvanted antigen into the skin and lungs of these memory animals led to significant recall responses including transient local lung inflammation observed by Positron Emission Tomography-Computed Tomography (PET-CT), elevated antibody titers, and expanded systemic and local Th1 and Th17 responses, including >20% antigen-specific T cells in the bronchoalveolar lavage. Overall, CAF®10b demonstrated an adjuvant able to drive true memory antibody, Th1 and Th17 vaccine-responses across rodent and primate species, supporting its translational potential.

5.
Nat Microbiol ; 7(9): 1376-1389, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35879526

RESUMO

The SARS-CoV-2 Omicron variant has very high levels of transmission, is resistant to neutralization by authorized therapeutic human monoclonal antibodies (mAb) and is less sensitive to vaccine-mediated immunity. To provide additional therapies against Omicron, we isolated a mAb named P2G3 from a previously infected vaccinated donor and showed that it has picomolar-range neutralizing activity against Omicron BA.1, BA.1.1, BA.2 and all other variants tested. We solved the structure of P2G3 Fab in complex with the Omicron spike using cryo-electron microscopy at 3.04 Å resolution to identify the P2G3 epitope as a Class 3 mAb that is different from mAb-binding spike epitopes reported previously. Using a SARS-CoV-2 Omicron monkey challenge model, we show that P2G3 alone, or in combination with P5C3 (a broadly active Class 1 mAb previously identified), confers complete prophylactic or therapeutic protection. Although we could select for SARS-CoV-2 mutants escaping neutralization by P2G3 or by P5C3 in vitro, they had low infectivity and 'escape' mutations are extremely rare in public sequence databases. We conclude that this combination of mAbs has potential as an anti-Omicron drug.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , Anticorpos Monoclonais , Anticorpos Antivirais , Microscopia Crioeletrônica , Epitopos , Haplorrinos , Humanos , Glicoproteínas de Membrana , Testes de Neutralização , Glicoproteína da Espícula de Coronavírus , Proteínas do Envelope Viral
6.
Sci Rep ; 12(1): 8489, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590057

RESUMO

Primary infection with herpes simplex type 1 (HSV-1) occurring around the mouth and nose switches rapidly to lifelong latent infection in sensitive trigeminal ganglia (TG) neurons. Sporadic reactivation of these latent reservoirs later in life is the cause of acute infections of the corneal epithelium, which can cause potentially blinding herpes simplex keratitis (HSK). There is no effective vaccine to protect against HSK, and antiviral drugs provide only partial protection against recurrences. We previously engendered an acute disease-free, non-reactivating latent state in mice when challenged with virulent HSV-1 in orofacial mucosa, by priming with non-neurovirulent HSV-1 (TKdel) before the challenge. Herein, we define the local immune infiltration and inflammatory chemokine production changes after virulent HSV-1 challenge, which were elicited by TKdel prime. Heightened immunosurveillance before virulent challenge, and early enhanced lymphocyte-enriched infiltration of the challenged lip were induced, which corresponded to attenuation of inflammation in the TG and enhanced viral control. Furthermore, classical latent-phase T cell persistence around latent HSV-1 reservoirs were severely reduced. These findings identify the immune processes that are likely to be responsible for establishing non-reactivating latent HSV-1 reservoirs. Stopping reactivation is essential for development of efficient vaccine strategies against HSV-1.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Ceratite Herpética , Animais , Herpesvirus Humano 1/fisiologia , Lábio , Camundongos , Gânglio Trigeminal
7.
Cell Rep ; 37(2): 109814, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34599871

RESUMO

Control of the ongoing SARS-CoV-2 pandemic is endangered by the emergence of viral variants with increased transmission efficiency, resistance to marketed therapeutic antibodies, and reduced sensitivity to vaccine-induced immunity. Here, we screen B cells from COVID-19 donors and identify P5C3, a highly potent and broadly neutralizing monoclonal antibody with picomolar neutralizing activity against all SARS-CoV-2 variants of concern (VOCs) identified to date. Structural characterization of P5C3 Fab in complex with the spike demonstrates a neutralizing activity defined by a large buried surface area, highly overlapping with the receptor-binding domain (RBD) surface necessary for ACE2 interaction. We further demonstrate that P5C3 shows complete prophylactic protection in the SARS-CoV-2-infected hamster challenge model. These results indicate that P5C3 opens exciting perspectives either as a prophylactic agent in immunocompromised individuals with poor response to vaccination or as combination therapy in SARS-CoV-2-infected individuals.


Assuntos
Anticorpos Amplamente Neutralizantes/uso terapêutico , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Linfócitos B/imunologia , Anticorpos Amplamente Neutralizantes/imunologia , COVID-19/imunologia , Linhagem Celular , Cricetinae , Modelos Animais de Doenças , Epitopos/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Fragmentos Fab das Imunoglobulinas/metabolismo , Testes de Neutralização , Ligação Proteica/imunologia , SARS-CoV-2/patogenicidade , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/ultraestrutura , Relação Estrutura-Atividade , Vacinação
8.
Front Immunol ; 10: 2161, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572376

RESUMO

The initiation of an immune response is dependent on the activation and maturation of dendritic cells after sensing pathogen associated molecular patterns by pattern recognition receptors. However, the response needs to be balanced as excessive pro-inflammatory cytokine production in response to viral or stress-induced pattern recognition receptor signaling has been associated with severe influenza A virus (IAV) infection. Here, we use an inhibitor of Toll-like receptor (TLR)3, a single-stranded oligonucleotide (ssON) with the capacity to inhibit certain endocytic routes, or a TLR3 agonist (synthetic double-stranded RNA PolyI:C), to evaluate modulation of innate responses during H1N1 IAV infection. Since IAV utilizes cellular endocytic machinery for viral entry, we also assessed ssON's capacity to affect IAV infection. We first show that IAV infected human monocyte-derived dendritic cells (MoDC) were unable to up-regulate the co-stimulatory molecules CD80 and CD86 required for T cell activation. Exogenous TLR3 stimulation did not overcome the IAV-mediated inhibition of co-stimulatory molecule expression in MoDC. However, TLR3 stimulation using PolyI:C led to an augmented pro-inflammatory cytokine response. We reveal that ssON effectively inhibited PolyI:C-mediated pro-inflammatory cytokine production in MoDC, notably, ssON treatment maintained an interferon response induced by IAV infection. Accordingly, RNAseq analyses revealed robust up-regulation of interferon-stimulated genes in IAV cultures treated with ssON. We next measured reduced IAV production in MoDC treated with ssON and found a length requirement for its anti-viral activity, which overlapped with its capacity to inhibit uptake of PolyI:C. Hence, in cases wherein an overreacting TLR3 activation contributes to IAV pathogenesis, ssON can reduce this signaling pathway. Furthermore, concomitant treatment with ssON and IAV infection in mice resulted in maintained weight and reduced viral load in the lungs. Therefore, extracellular ssON provides a mechanism for immune regulation of TLR3-mediated responses and suppression of IAV infection in vitro and in vivo in mice.


Assuntos
Células Dendríticas/imunologia , Vírus da Influenza A Subtipo H1N1 , Oligonucleotídeos/farmacologia , Infecções por Orthomyxoviridae/imunologia , Receptor 3 Toll-Like/imunologia , Animais , Células Dendríticas/virologia , Cães , Feminino , Humanos , Células Madin Darby de Rim Canino , Camundongos Endogâmicos BALB C , Monócitos/citologia , Infecções por Orthomyxoviridae/virologia
9.
Sci Rep ; 8(1): 15841, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30367171

RESUMO

Recognition of nucleic acids by endosomal Toll-like receptors (TLR) is essential to combat pathogens, but requires strict control to limit inflammatory responses. The mechanisms governing this tight regulation are unclear. We found that single-stranded oligonucleotides (ssON) inhibit endocytic pathways used by cargo destined for TLR3/4/7 signaling endosomes. Both ssDNA and ssRNA conferred the endocytic inhibition, it was concentration dependent, and required a certain ssON length. The ssON-mediated inhibition modulated signaling downstream of TLRs that localized within the affected endosomal pathway. We further show that injection of ssON dampens dsRNA-mediated inflammatory responses in the skin of non-human primates. These studies reveal a regulatory role for extracellular ssON in the endocytic uptake of TLR ligands and provide a mechanistic explanation of their immunomodulation. The identified ssON-mediated interference of endocytosis (SOMIE) is a regulatory process that temporarily dampens TLR3/4/7 signaling, thereby averting excessive immune responses.


Assuntos
Clatrina/metabolismo , Endocitose/efeitos dos fármacos , Oligonucleotídeos/farmacologia , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Receptor 7 Toll-Like/metabolismo , Animais , Células Cultivadas , Quimiocinas/metabolismo , Citocinas/metabolismo , DNA de Cadeia Simples/farmacologia , Endossomos/metabolismo , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Macaca fascicularis , Poli I-C/farmacologia , Transdução de Sinais/efeitos dos fármacos , Pele/metabolismo , Pele/patologia , Receptor 3 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 7 Toll-Like/antagonistas & inibidores
10.
Front Immunol ; 9: 423, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29552017

RESUMO

Immunological inductive tissues, such as secondary lymphoid organs, are composed of distinct anatomical microenvironments for the generation of immune responses to pathogens and immunogens. These microenvironments are characterized by the compartmentalization of highly specialized immune and stromal cell populations, as well as the presence of a complex network of soluble factors and chemokines that direct the intra-tissue trafficking of naïve and effector cell populations. Imaging platforms have provided critical contextual information regarding the molecular and cellular interactions that orchestrate the spatial microanatomy of relevant cells and the development of immune responses against pathogens. Particularly in HIV/SIV disease, imaging technologies are of great importance in the investigation of the local interplay between the virus and host cells, with respect to understanding viral dynamics and persistence, immune responses (i.e., adaptive and innate inflammatory responses), tissue structure and pathologies, and changes to the surrounding milieu and function of immune cells. Merging imaging platforms with other cutting-edge technologies could lead to novel findings regarding the phenotype, function, and molecular signatures of particular immune cell targets, further promoting the development of new antiviral treatments and vaccination strategies.


Assuntos
Infecções por HIV/imunologia , HIV/imunologia , Sistema Imunitário , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia/imunologia , Animais , Comunicação Celular , Humanos , Macaca mulatta , Imagens de Fantasmas
11.
Bull Acad Natl Med ; 201(1): 259-272, 2017.
Artigo em Francês | MEDLINE | ID: mdl-32226055

RESUMO

SUMMARYThe explosion of vaccines during the 20th century allowed the control of numerous infectious plagues but multiple challenges oppose conservation and extension of these successes. The hesitation of modern societies in front of vaccinations requires researches in life, human and social sciences in order to reach a better understanding of vaccines mechanism of action and to improve the tolerance and acceptability of vaccines and additives. The ageing of the populations and the increase of subjects at risk also require to improve the immunogenicity and the efficiency of existing vaccines. The constant emergence of new epidemics or the development of the antibio-resistance imposes innovation and development of new vaccines. The recent difficulties faced by the development of vaccines against malaria, tuberculosis or AIDS illustrate the necessity of moving beyond classical recipes and of elaborating new vectors and new adjuvants, of better understanding the heterogeneity of vaccine immunity and of developing alternative routes of immunization. Multidisciplinary researches using the most recent advances in molecular, structural and cellular biology, in microbiology, immunology and of genetic engineering to answer these worldwide challenges.

12.
Sci Transl Med ; 3(94): 94ra71, 2011 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-21813755

RESUMO

Chronic hepatitis C virus (HCV) infection, with its cohort of life-threatening complications, affects more than 200 million persons worldwide and has a prevalence of more than 10% in certain countries. Preventive and therapeutic vaccines against HCV are thus much needed. Neutralizing antibodies (NAbs) are the foundation for successful disease prevention for most established vaccines. However, for viruses that cause chronic infection such as HIV or HCV, induction of broad NAbs from recombinant vaccines has remained elusive. We developed a vaccine platform specifically aimed at inducing NAbs based on pseudotyped virus-like particles (VLPs) made with retroviral Gag. We report that VLPs pseudotyped with E2 and/or E1 HCV envelope glycoproteins induced high-titer anti-E2 and/or anti-E1 antibodies, as well as NAbs, in both mouse and macaque. The NAbs, which were raised against HCV 1a, cross-neutralized the five other genotypes tested (1b, 2a, 2b, 4, and 5). Thus, the described VLP platform, which can be pseudotyped with a vast array of virus envelope glycoproteins, represents a new approach to viral vaccine development.


Assuntos
Anticorpos Neutralizantes/biossíntese , Hepacivirus/imunologia , Proteínas Virais/imunologia , Vírion/imunologia , Animais , Reações Cruzadas , Anticorpos Anti-Hepatite C/biossíntese , Macaca , Camundongos , Dados de Sequência Molecular
13.
Bull Acad Natl Med ; 193(1): 127-36; discussion 137-8, 2009 Jan.
Artigo em Francês | MEDLINE | ID: mdl-19718985

RESUMO

HIV infection leads to a gradual deterioration in immune status. The mechanisms underlying CD4 T cell depletion in this setting are controversial. One of the most intriguing phenomena is that many uninfected CD4 cells die prematurely in HIV-infected subjects. We therefore investigated the possibility that these cells are killed by a collateral effector mechanism. Here we show that a cellular ligand for the natural cytotoxicity receptor NKp44 (NKp44L) is expressed during HIV infection, and that its expression correlates both with CD4 T cell depletion and with an increase in viral load. CD4+ T cells expressing the NKp44L ligand are highly sensitive to the lytic activity of NKp44+ NK cells. NKp44L ligand expression is strongly induced by the highly conserved 3S motif of the HIV-1 envelope protein gp41. Anti-3S antibodies, detected early in the disease, protect CD4+ T cells from NK-mediated lysis during incubation with 3S. In addition, anti-3S antibody titers correlate positively with CD4+ T cell numbers and negatively with NKp44L expression on CD4 T cells. To determine whether anti-3S immunization might prevent NKp44L expression on CD4 T cells in vivo and thereby prevent the decline in CD4 T cells, macaques were immunized with 3S and then infected with the simian virus SHIV162P3. 3S peptide vaccination elicited antibodies that prevented CD4+ T cell depletion (percentage and absolute number), and also NK activation and cytotoxicity, without halting virus replication. These data raise new questions on HIV infection and point to novel preventive and therapeutic vaccine strategies.


Assuntos
Vacinas contra a AIDS , Proteína gp41 do Envelope de HIV/imunologia , Infecções por HIV/imunologia , Animais , Linfócitos T CD4-Positivos/metabolismo , Macaca , Receptor 2 Desencadeador da Citotoxicidade Natural/metabolismo
14.
Exp Hematol ; 35(4): 653-61, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17379075

RESUMO

OBJECTIVE: Studies in mice have reported contradictory results on the contribution of bone marrow cells to myocardial regeneration. This study aims to evaluate their ability to differentiate into cells of cardiac lineage in a nonhuman primate mode of myocardial infarct. MATERIALS AND METHODS: Lin(-)CD34(-) and CD34(+)-enriched bone marrow cells or mobilized peripheral blood cells were transduced with green fluorescent protein (GFP) and injected directly into ischemic myocardium. The fate of the transplanted cells was evaluated using quantitative reverse transcription polymerase chain reaction (QRT-PCR) and immunohistology. Animals were followed-up using echocardiography. RESULTS: QRT-PCR analysis detected from 3% to 10% of the original number of administered GFP(+) cells after 7 days. These GFP(+) cells did not express cardiac tissue-specific markers, but were immunophenotypically consistent with undifferentiated hematopoietic cells. The local production of vascular endothelial growth factor, measured by QRT-PCR, was approximately doubled as compared to the untreated infarcted control heart. Three months after hematopoietic stem cell (HSC) administration, no GFP(+) cells were detected and no evidence of regeneration of the infarcted region was found by histological examination. In contrast, a high level of matrix metalloproteinase 2 was measured in infarct and peri-infarct area. At this time, an improved ejection fraction and decreased left ventricular chamber dimension, which might be also related to a natural course after reperfusion, were observed. CONCLUSIONS: Our data show that GFP(+) CD34(+) and Lin(-)CD34(-)-enriched HSC do not differentiate into cardiomyocytes or into endothelial cells in the infarcted myocardium and that the local production of some growth factors had no positive effect on myocardial regeneration after 3 months.


Assuntos
Antígenos CD34/imunologia , Modelos Animais de Doenças , Células-Tronco Hematopoéticas/imunologia , Infarto do Miocárdio/imunologia , Transdução Genética , Animais , Sequência de Bases , Primers do DNA , Feminino , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Células-Tronco Hematopoéticas/citologia , Macaca fascicularis , Masculino , Infarto do Miocárdio/genética , Infarto do Miocárdio/cirurgia , Fenótipo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Vírus da Imunodeficiência Símia/genética , Transplante de Células-Tronco
15.
J Immunol ; 176(2): 914-22, 2006 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-16393976

RESUMO

Despite efficient antiretroviral therapy (ART), CD4+ T cell counts often remain low in HIV-1-infected patients. This has led to IL-7, a crucial cytokine involved in both thymopoiesis and peripheral T cell homeostasis, being suggested as an additional therapeutic strategy. We investigated whether recombinant simian IL-7-treatment enhanced the T cell renewal initiated by ART in rhesus macaques chronically infected with SIVmac251. Six macaques in the early chronic phase of SIV infection received antiretroviral treatment. Four macaques also received a 3-wk course of IL-7 injections. Viral load was unaffected by IL-7 treatment. IL-7 treatment increased the number of circulating CD4+ and CD8+ memory T cells expressing activation (HLA-DR+, CD25+) and proliferation (Ki-67+) markers. It also increased naive (CD45RAbrightCD62L+) T cell counts by peripheral proliferation and enhanced de novo thymic production. The studied parameters returned to pretreatment values by day 29 after the initiation of treatment, concomitantly to the appearance of anti-IL-7 neutralizing Abs, supporting the need for a nonimmunogenic molecule for human treatment. Thus, IL-7, which increases T cell memory and de novo renewal of naive T cells may have additional benefits in HIV-infected patients receiving ART.


Assuntos
Antivirais/uso terapêutico , Interleucina-7/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Subpopulações de Linfócitos T/efeitos dos fármacos , Animais , Sequência de Bases , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células/efeitos dos fármacos , DNA/genética , Humanos , Interleucina-7/imunologia , Ativação Linfocitária/efeitos dos fármacos , Contagem de Linfócitos , Macaca mulatta , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Síndrome de Imunodeficiência Adquirida dos Símios/genética , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Subpopulações de Linfócitos T/imunologia , Viremia/tratamento farmacológico , Viremia/imunologia , Viremia/virologia
16.
J Gen Virol ; 81(Pt 11): 2741-2750, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11038387

RESUMO

To test the in vivo anti-simian immunodeficiency virus (SIV) efficacy of interferon (IFN)-beta-engineered lymphocytes, peripheral blood lymphocytes harvested from two uninfected macaques were transduced with a retroviral vector carrying a constitutively expressed IFN-beta gene and reinfused, resulting in approximately 1 IFN-beta-transduced cell out of 1000 circulating cells. The gene-modified cells were well tolerated and could be detected for at least 74 days without causing any apparent side effects. These two animals together with three untreated control macaques were then infected with SIVmac251. The two IFN-beta-infused macaques are in good health, 478 days after infection, with a reduced plasma virus load and sustained numbers of CD4(+) and CD8(+) cells. Throughout the study, the proportion of IFN-beta-transduced cells has been maintained. Of the three control macaques, two were characterized by a high plasma virus load and a decrease in CD4(+) cells. One was moribund and was sacrificed 350 days after infection and the other now has fewer than 100 circulating CD4(+) cells/ml. Unexpectedly, the third control macaque, which, like the two IFN-beta-infused animals, had a low plasma virus load and a maintenance of CD4(+) and CD8(+) cell number, was characterized by a permanent level of serum IFN-beta, of unknown origin, already present before SIV infection. Although no definite conclusion can be made in view of the limited number of animals, these data indicate that further exploration is warranted of an IFN-beta-based anti-human immunodeficiency virus gene therapy.


Assuntos
Imunoterapia , Interferon beta/genética , Interferon beta/imunologia , Linfócitos/imunologia , Macaca/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Vírus da Imunodeficiência Símia , Animais , Vetores Genéticos , Macaca/virologia , Retroviridae , Síndrome de Imunodeficiência Adquirida dos Símios/prevenção & controle , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA