Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(2)2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35215963

RESUMO

SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has wreaked havoc across the globe for the last two years. More than 300 million cases and over 5 million deaths later, we continue battling the first real pandemic of the 21st century. SARS-CoV-2 spread quickly, reaching most countries within the first half of 2020, and New Zealand was not an exception. Here, we describe the first isolation and characterization of SARS-CoV-2 variants during the initial virus outbreak in New Zealand. Patient-derived nasopharyngeal samples were used to inoculate Vero cells and, three to four days later, a cytopathic effect was observed in seven viral cultures. Viral growth kinetics was characterized using Vero and VeroE6/TMPRSS2 cells. The identity of the viruses was verified by RT-qPCR, Western blot, indirect immunofluorescence assays, and electron microscopy. Whole-genome sequences were analyzed using two different yet complementary deep sequencing platforms (MiSeq/Illumina and Ion PGM™/Ion Torrent™), classifying the viruses as SARS-CoV-2 B.55, B.31, B.1, or B.1.369 based on the Pango Lineage nomenclature. All seven SARS-CoV-2 isolates were susceptible to remdesivir (EC50 values from 0.83 to 2.42 µM) and ß-D-N4-hydroxycytidine (molnupiravir, EC50 values from 0.96 to 1.15 µM) but not to favipiravir (>10 µM). Interestingly, four SARS-CoV-2 isolates, carrying the D614G substitution originally associated with increased transmissibility, were more susceptible (2.4-fold) to a commercial monoclonal antibody targeting the spike glycoprotein than the wild-type viruses. Altogether, this seminal work allowed for early access to SARS-CoV-2 isolates in New Zealand, paving the way for numerous clinical and scientific research projects in the country, including the development and validation of diagnostic assays, antiviral strategies, and a national COVID-19 vaccine development program.


Assuntos
COVID-19/epidemiologia , Genoma Viral , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Adolescente , Adulto , Idoso , Animais , Anticorpos Monoclonais/farmacologia , Antivirais , Chlorocebus aethiops , Estudos de Coortes , Efeito Citopatogênico Viral , Humanos , Pessoa de Meia-Idade , Nova Zelândia/epidemiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/imunologia , Células Vero , Sequenciamento Completo do Genoma , Adulto Jovem
2.
Biol Open ; 8(9)2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31488408

RESUMO

Axis specification is a fundamental developmental process. Despite this, the mechanisms by which it is controlled across insect taxa are strikingly different. An excellent example of this is terminal patterning, which in Diptera such as Drosophila melanogaster occurs via the localized activation of the receptor tyrosine kinase Torso. In Hymenoptera, however, the same process appears to be achieved via localized mRNA. How these mechanisms evolved and what they evolved from remains largely unexplored. Here, we show that torso-like, known for its role in Drosophila terminal patterning, is instead required for the integrity of the vitelline membrane in the hymenopteran wasp Nasonia vitripennis We find that other genes known to be involved in Drosophila terminal patterning, such as torso and Ptth, also do not function in Nasonia embryonic development. These findings extended to orthologues of Drosophila vitelline membrane proteins known to play a role in localizing Torso-like in Drosophila; in Nasonia these are instead required for dorso-ventral patterning, gastrulation and potentially terminal patterning. Our data underscore the importance of the vitelline membrane in insect development, and implies phenotypes caused by knockdown of torso-like must be interpreted in light of its function in the vitelline membrane. In addition, our data imply that the signalling components of the Drosophila terminal patterning systems were co-opted from roles in regulating moulting, and co-option into terminal patterning involved the evolution of a novel interaction with the vitelline membrane protein Torso-like.This article has an associated First Person interview with the first author of the paper.

3.
Int J Cardiol ; 202: 13-20, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26386349

RESUMO

BACKGROUND: Diabetes promotes progressive loss of cardiac cells, which are replaced by a fibrotic matrix, resulting in the loss of cardiac function. In the current study we sought to identify if excessive autophagy plays a major role in inducing this progressive loss. METHODS AND RESULTS: Immunofluorescence and western blotting analysis of the right atrial appendages collected from diabetic and non-diabetic patients undergoing coronary artery bypass graft surgery showed a marked increase in the level of autophagy in the diabetic heart, as evidenced by increased expression of autophagy marker LC3B-II and its mediator Beclin-1 and decreased expression of p62, which incorporates into autophagosomes to be efficiently degraded. Moreover, a marked activation of pro-apoptotic caspase-3 was observed. Electron microscopy showed increased autophagosomes in the diabetic heart. In vivo measurement of autophagic flux by choloroquine injection resulted in further enhancement of LC3B-II in the diabetic myocardium, confirming increased autophagic activity in the type-2 diabetic heart. Importantly, in-vitro genetic depletion of beclin-1 in high glucose treated adult rat cardiomyocytes markedly inhibited the level of autophagy and subsequent apoptotic cell death. CONCLUSIONS: These findings demonstrate the pathological role of autophagy in the type-2 diabetic heart, opening up a potentially novel therapeutic avenue for the treatment of diabetic heart disease.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Diabetes Mellitus Tipo 2/genética , Cardiomiopatias Diabéticas/genética , Regulação da Expressão Gênica , Proteínas de Membrana/genética , Miocárdio/metabolismo , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/biossíntese , Autofagia/genética , Proteína Beclina-1 , Western Blotting , Células Cultivadas , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Cardiomiopatias Diabéticas/metabolismo , Cardiomiopatias Diabéticas/patologia , Feminino , Humanos , Marcação In Situ das Extremidades Cortadas , Masculino , Proteínas de Membrana/biossíntese , Camundongos , Camundongos Obesos , Microscopia Eletrônica , Miocárdio/ultraestrutura , RNA/genética , RNA Interferente Pequeno/genética , Ratos , Ratos Zucker , Transdução de Sinais/genética
4.
Data Brief ; 5: 269-75, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26543890

RESUMO

This data article contains full list of autophagy related genes that are altered in diabetic heart. This article also shows data from in vitro cultured cardiomyocytes that are exposed the high glucose treatment to simulate hyperglycemic state in vitro. The interpretation of these data and further extensive insights into the regulation of SG biogenesis by AMPK can be found in "Type-2 diabetes increases autophagy in the human heart through promotion of Beclin-1 mediated pathway" (Munasinghe et al., in press) [1].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA