Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Expert Rev Med Devices ; 17(11): 1211-1220, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33103939

RESUMO

Background: The current SARS-CoV-2 pandemic has provoked the collapse of some health systems due to insufficient intensive care unit capacity. The use of continuous positive airway pressure (CPAP) and high-flow nasal oxygen (HFNO) therapies has been limited in consideration of the risk of occupational infection in health-care professionals. Aims: In preclinical experimental simulations, evaluate occupational and environmental safety of the newly developed isolation system for aerosol-transmitted infections (ISATI). Method: Simulations were conducted to test ISATI's capability to isolate aerosolized molecular (caffeine), and biological (SARS-CoV-2 synthetic RNA) markers. Caffeine deposition was analyzed on nitrocellulose sensor discs by proton nuclear magnetic resonance spectroscopy. Synthetic SARS-CoV-2 detection was performed by reverse transcription-polymerase chain reaction. Results: ISATI demonstrated efficacy in isolating molecular and biological markers within the enclosed environment in simulated conditions of CPAP, HFNO and mechanical ventilation therapy. Neither the molecular marker nor substantial amounts of synthetic SARS-CoV-2 RNA were detected in the surrounding environment, outside ISATI, indicating appropriate occupational safety for health-care professionals. Conclusion: Aerosolized markers were successfully contained within ISATI in all experimental simulations, offering occupational and environmental protection against the dissemination of aerosolized microparticles under CPAP or HFNO therapy conditions, which are indicated for patients with acute respiratory infections.


Assuntos
COVID-19/terapia , Ventilação não Invasiva , Aerossóis , Pressão Positiva Contínua nas Vias Aéreas/instrumentação , Pressão Positiva Contínua nas Vias Aéreas/métodos , Pessoal de Saúde , Humanos , Ventilação não Invasiva/instrumentação , Ventilação não Invasiva/métodos , Oxigênio , Oxigenoterapia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA