Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
AMB Express ; 10(1): 117, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32613282

RESUMO

The fungal kingdom has been widely studied as a source of bioactive compounds of interest to the pharmaceutical and food industry. This paper studies the production of natural red pigments by Fusarium solani BRM054066 in the submerged fermentation system, using Doehlert experimental design to determine optimal cultivation conditions. The chemical composition of the red pigment was determined by Nuclear Magnetic Resonance spectroscopy (NMR) and Ultra-Performance Liquid Chromatography coupled to Mass Spectrometry (UPLC-MS). Antioxidant activity was assessed by the ability to sequester of free radical DPPH. In the analysis of anti-inflammatory activity, murine peritoneal macrophages activated by LPS were used, and the gene expression of TNF-α, IL-1ß, IL-6, IL-10 and IL-17 was determined using qPCR. As a result, it was found that agitation at 200 rpm and glucose concentration ≥ 20 g/L promote the best results in the production of red pigment. The chemical compounds identified were two naphthoquinones, fusarubin and dihydrofusarubin, and an anthraquinone, a bostrycoidin, being fusarubin the majority compound. The red pigment showed antioxidant activity by scavenge 50% of the DPPH radical, in a concentration of 24 µg/mL. The pigment also showed an effective anti-inflammatory capacity by reducing the overexpression of the pro-inflammatory cytokines TNF-α, IL-1ß and IL-6 and promoting the production of anti-inflammatory IL-10 and IL-17, in murine macrophages activated by LPS (p < 0.05). According to the results, the fungus F. solani BRM054066, under optimized conditions of cultivation, proved to be a promising source of biologically active natural pigments with wide industrial applicability.

2.
An Acad Bras Cienc ; 90(2 suppl 1): 2359-2373, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28793011

RESUMO

In this work, we hypothesized that two spore-based methods, direct analysis of field samples and trap cultures, simultaneously used for assessment of occurrence and species richness of arbuscular mycorrhizal fungi (AMF) may vary in their efficiency according to the environmental conditions and the total AMF species richness of the evaluated ecosystem. The performance of both methods was analyzed based on two datasets: 1) a complete site x species matrix compiled from two studies in different land uses in the Amazon using direct analysis of field samples and trap cultures. 2) Total number of AMF morphotypes detected by both methods in published manuscripts across several ecosystems. From dataset 1, direct analysis of field samples revealed 57 morphotypes, whereas only 21 of these were detected by trap culture. Community variation (beta diversity) analysis revealed that field samples are far more sensitive in detecting shifts in AMF community composition among land uses than trap cultures in the Amazon region, with the combined results of both methods being not better than that obtained only by direct analysis of field samples. Analysis of dataset 2 showed that the relative performance of trap cultures, using direct analysis of field sample as reference, was inversely related to the total observed AMF species richness.


Assuntos
Biodiversidade , Micorrizas , Microbiologia do Solo , Esporos Fúngicos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA