Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 95(38): 14350-14356, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37672689

RESUMO

The measurement of gaseous compounds in the atmosphere is a multichallenging task due to their low concentration range, long and latitudinal concentration variations, and the presence of sample interferents. Herein, we present a quadcopter drone deployed with a fully integrated 3D-printed analytical laboratory for H2S monitoring. Also, the analytical system makes part of the Internet of Things approach. The analytical method applied was based on the reaction between fluorescein mercuric acetate and H2S that led to fluorescence quenching. A 5 V micropump at a constant airflow of 50 mL min-1 was employed to deliver constant air into a flask containing 800 µL of the reagent. The analytical signal was obtained using a light-emitting diode and a miniaturized digital light detector. The method enabled the detection of H2S in the range from 15 to 200 ppbv, with a reproducibility of 5% for a sampling time of 10 min and an limit of detection of 9 ppbv. All devices were controlled using an Arduino powered by a small power bank, and the results were transmitted to a smartphone via Bluetooth. The proposed device resulted in a weight of 300 g and an overall cost of ∼50 USD. The platform was used to monitor the concentration of H2S in different intervals next to a wastewater treatment plant at ground and vertical levels. The ability to perform all analytical steps in the same device, the low-energy requirements, the low weight, and the attachment of data transmission modules offer new possibilities for drone-based analytical systems for air pollution monitoring.

2.
Talanta ; 222: 121558, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33167256

RESUMO

The determination of sulfide anion in a variety of waters (e.g. wastewaters and natural waters) even at low concentration (i.e. in the µM range) is essential due to its high toxicity, corrosivity and unpleasant smelling proprieties. Despite several methodologies are dedicated to aqueous sulfide determination, most of them need sampling/transport steps - which is no adequate to sulfide due to its reactivity and instability - resulting in critical analytical bias. In this study, we present a fully modular and portable 3D-printed platform for in-situ aqueous sulfide determination. The analytical device is based on H2S vapor generation from the sulfide sample solution by addition of H3PO4 followed by collection in a miniaturized cuvette (µCuvette) containing few microliters of Fluorescein Mercury Acetate (FMA), a fluorescent dye. The chemical reaction results in fluorescence quenching of the dye at 530 nm when excited at 470 nm. A light-emitted diode (LED) emitting at 470 nm and powered with 9 V-battery based circuitry was employed to provide stable excitation light source at 20 mA. Digital images from the light emitted by FMA were captured by a smartphone and the Green channel intensity was used as analytical signal. Under optimized conditions, a linear relation (r2 > 0.99) from 0.1 to 5 µM of sulfide was obtained using 10 mL of standard/sample solution. The portable platform was applied to the in-situ monitoring of sulfide in tap water and river water with no loss of analyte, no need for external power supplies or powered pumps. and the analysis results were obtained in 20 min. The proposed device shows advantages in terms of high degree of portability, low-power consumption, easiness to use, minimal use of reagents yet enabling on-site determination of sulfide with high sensitivity. By using the vapor generation approach combined with the modular building blocks concept presented herein for the first time, we anticipate the development of a tailored "plug-and-play" platform enabling the multiplexed determination of volatile substances using absorbance, reflectance or fluorescence measurements with smartphones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA