Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Stem Cell Res ; 81: 103559, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39276530

RESUMO

Over the past decade, the use of human stem cell-derived ß cells (SC-ß cells) to model pancreatic ß cell development, function and disease has become increasingly common. Though protocols are rapidly improving, current directed differentiation strategies do not yield a pure population of insulin-positive SC-ß cells in vitro. Therefore, it is experimentally advantageous to have reporter lines that allow for live sorting of insulin-positive populations. To aid in these studies, we have knocked mNeonGreen fluorescent protein into the endogenous insulin locus of the commonly used H1 (WA01) human embryonic stem cell line.

3.
JCEM Case Rep ; 1(2): luad029, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37908465

RESUMO

Misinterpretation of common endocrine hormonal immunoassays can distort the clinical picture and lead to unnecessary medical workups. Potential assay inference is important to recognize when the clinical presentation and laboratory evaluation are inconsistent. This is demonstrated by the case of an 18-month-old girl who initially presented with ketotic hypoglycemia and was found on diagnostic fasting evaluation to have the triad of hypoglycemia, inappropriately high insulin levels, and low C-peptide levels-point-of-care glucose 43 mg/dL (2.39 mmol/L) (confirmatory 52 mg/dL [2.89 mmol/L]), insulin 48.1 µIU/mL (334 pmol/L), and C-peptide 0.2 ng/mL (0.07 nmol/L) concerning for factitious insulin (insulin:C-peptide ratio 4.77). On repeat diagnostic fast, insulin assays measured by liquid chromatography-mass spectrometry were incongruent with prior testing by immunoassay, demonstrating a falsely elevated insulin level when measured by immunoassay, likely due to human antimouse antibody interference (HAMA 181 ng/mL). This case represents a diagnostic challenge in which is it imperative to recognize possible immunoassay interference. It is critical to establish the difference between insulin assay interference and factitious insulin through use of alternative laboratory methods as misdiagnosis could lead to the serious implication of Munchausen by proxy resulting in the removal of a child from their home and potentially parents being charged with a crime.

4.
Mol Metab ; 66: 101610, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36209784

RESUMO

BACKGROUND: Type 1 diabetes (T1D) is an autoimmune disease in which pancreatic insulin-producing ß cells are specifically destroyed by the immune system. Understanding the initiation and progression of human T1D has been hampered by the lack of appropriate models that can reproduce the complexity and heterogeneity of the disease. The development of platforms combining multiple human pluripotent stem cell (hPSC) derived tissues to model distinct aspects of T1D has the potential to provide critical novel insights into the etiology and pathogenesis of the human disease. SCOPE OF REVIEW: In this review, we summarize the state of hPSC differentiation approaches to generate cell types and tissues relevant to T1D, with a particular focus on pancreatic islet cells, T cells, and thymic epithelium. We present current applications as well as limitations of using these hPSC-derived cells for disease modeling and discuss efforts to optimize platforms combining multiple cell types to model human T1D. Finally, we outline remaining challenges and emphasize future improvements needed to accelerate progress in this emerging field of research. MAJOR CONCLUSIONS: Recent advances in reprogramming approaches to create patient-specific induced pluripotent stem cell lines (iPSCs), genome engineering technologies to efficiently modify DNA of hPSCs, and protocols to direct their differentiation into mature cell types have empowered the use of stem cell derivatives to accurately model human disease. While challenges remain before complex interactions occurring in human T1D can be modeled with these derivatives, experiments combining hPSC-derived ß cells and immune cells are already providing exciting insight into how these cells interact in the context of T1D, supporting the viability of this approach.


Assuntos
Diabetes Mellitus Tipo 1 , Células-Tronco Pluripotentes Induzidas , Células Secretoras de Insulina , Células-Tronco Pluripotentes , Humanos , Diabetes Mellitus Tipo 1/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células Secretoras de Insulina/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Diferenciação Celular
5.
Front Endocrinol (Lausanne) ; 12: 682625, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149620

RESUMO

A mechanistic understanding of the genetic basis of complex diseases such as diabetes mellitus remain elusive due in large part to the activity of genetic disease modifiers that impact the penetrance and/or presentation of disease phenotypes. In the face of such complexity, rare forms of diabetes that result from single-gene mutations (monogenic diabetes) can be used to model the contribution of individual genetic factors to pancreatic ß-cell dysfunction and the breakdown of glucose homeostasis. Here we review the contribution of protein coding and non-protein coding genetic disease modifiers to the pathogenesis of diabetes subtypes, as well as how recent technological advances in the generation, differentiation, and genome editing of human pluripotent stem cells (hPSC) enable the development of cell-based disease models. Finally, we describe a disease modifier discovery platform that utilizes these technologies to identify novel genetic modifiers using induced pluripotent stem cells (iPSC) derived from patients with monogenic diabetes caused by heterozygous mutations.


Assuntos
Diabetes Mellitus/genética , Edição de Genes , Células Secretoras de Insulina , Células-Tronco Pluripotentes , Animais , Estudo de Associação Genômica Ampla , Humanos
6.
Am J Med Genet A ; 185(4): 1251-1255, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33442921

RESUMO

Rubinstein-Taybi syndrome (RSTS) is an autosomal dominant genetic syndrome characterized by distinct facial features, broad thumbs, growth restriction, microcephaly, intellectual disability, and developmental delay. Pathogenic variants in both CREBBP and EP300 have been associated with RSTS. Here we present a case of a female with hyperinsulinism and features consistent with RSTS, found to have a pathogenic variant in EP300. While there have been a few rare case reports of hyperinsulinism in RSTS, we suggest that hyperinsulinism might be a more prominent feature in EP300 variant RSTS than previously recognized.


Assuntos
Proteína p300 Associada a E1A/genética , Predisposição Genética para Doença , Hiperinsulinismo/genética , Síndrome de Rubinstein-Taybi/genética , Feminino , Variação Genética/genética , Genótipo , Humanos , Hiperinsulinismo/patologia , Lactente , Recém-Nascido , Mutação/genética , Fenótipo , Síndrome de Rubinstein-Taybi/patologia , Deleção de Sequência/genética
7.
Stem Cell Res ; 50: 102112, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33316598

RESUMO

Remarkable strides have been made over the past decade on the development of pancreatic ß-cells from human stem cells through directed differentiation, allowing for modeling of ß-cell development, function and disease. However, in vitro models and future therapeutic applications will require the use of stem cell-derived islets with multiple monohormonal endocrine cells types, including α, ß, and δ cells. Using the previously reported Mel1 InsGFP/w human embryonic stem cell (hESC) line, we have knocked-in Red Fluorescence Protein (RFP) under the control of the endogenous somatostatin promoter using CRISPR/Cas9, generating a dual insulin and somatostatin reporter hESC line.

8.
Endocrinology ; 161(2)2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31960055

RESUMO

Human in vitro model systems of diabetes are critical to both study disease pathophysiology and offer a platform for drug testing. We have generated a set of tools in the human ß-cell line EndoC-ßH1 that allows the efficient and inexpensive characterization of ß-cell physiology and phenotypes driven by disruption of candidate genes. First, we generated a dual reporter line that expresses a preproinsulin-luciferase fusion protein along with GCaMP6s. This reporter line allows the quantification of insulin secretion by measuring luciferase activity and calcium flux, a critical signaling step required for insulin secretion, via fluorescence microscopy. Using these tools, we demonstrate that the generation of the reporter human ß-cell line was highly efficient and validated that luciferase activity could accurately reflect insulin secretion. Second, we used a lentiviral vector carrying the CRISPR-Cas9 system to generate candidate gene disruptions in the reporter line. We also show that we can achieve gene disruption in ~90% of cells using a CRISPR-Cas9 lentiviral system. As a proof of principle, we disrupt the ß-cell master regulator, PDX1, and show that mutant EndoC-ßH1 cells display impaired calcium responses and fail to secrete insulin when stimulated with high glucose. Furthermore, we show that PDX1 mutant EndoC-ßH1 cells exhibit decreased expression of the ß-cell-specific genes MAFA and NKX6.1 and increased GCG expression. The system presented here provides a platform to quickly and easily test ß-cell functionality in wildtype and cells lacking a gene of interest.


Assuntos
Sinalização do Cálcio , Linhagem Celular , Genes Reporter , Secreção de Insulina , Células Secretoras de Insulina , Sistemas CRISPR-Cas , Regulação para Baixo , Técnicas de Inativação de Genes , Proteínas de Homeodomínio/genética , Humanos , Transativadores/genética
9.
JCI Insight ; 4(21)2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672937

RESUMO

Islet transplantation is an effective therapy for achieving and maintaining normoglycemia in patients with type 1 diabetes mellitus. However, the supply of transplantable human islets is limited. Upon removal from the pancreas, islets rapidly disintegrate and lose function, resulting in a short interval for studies of islet biology and pretransplantation assessment. Here, we developed a biomimetic platform that can sustain human islet physiology for a prolonged period ex vivo. Our approach involved the creation of a multichannel perifusion system to monitor dynamic insulin secretion and intracellular calcium flux simultaneously, enabling the systematic evaluation of glucose-stimulated insulin secretion under multiple conditions. Using this tool, we developed a nanofibrillar cellulose hydrogel-based islet-preserving platform (iPreP) that can preserve islet viability, morphology, and function for nearly 12 weeks ex vivo, and with the ability to ameliorate glucose levels upon transplantation into diabetic hosts. Our platform has potential applications in the prolonged maintenance of human islets, providing an expanded time window for pretransplantation assessment and islet studies.


Assuntos
Celulose/química , Hidrogéis/química , Ilhotas Pancreáticas , Nanofibras/química , Preservação Biológica/métodos , Adolescente , Adulto , Feminino , Humanos , Técnicas In Vitro , Transplante das Ilhotas Pancreáticas/métodos , Masculino , Pessoa de Meia-Idade
10.
Cell Metab ; 18(1): 99-105, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23823480

RESUMO

Insulin rapidly suppresses hepatic glucose production and slowly decreases expression of genes encoding gluconeogenic proteins. In this study, we show that an immediate effect of insulin is to redirect newly synthesized glucose-6-phosphate to glycogen without changing the rate of gluconeogenesis. This process requires hepatic Akt2, as revealed by blunted insulin-mediated suppression of glycogenolysis in the perfused mouse liver, elevated hepatic glucose production during a euglycemic-hyperinsulinemic clamp, or diminished glycogen accumulation during clamp or refeeding in mice without hepatic Akt2. Surprisingly, the absence of Akt2 disrupted glycogen metabolism independent of GSK3α and GSK3ß phosphorylation, which is thought to be an essential step in the pathway by which insulin regulates glycogen synthesis through Akt. These data show that (1) the immediate action of insulin to suppress hepatic glucose production functions via an Akt2-dependent redirection of glucose-6-phosphate to glycogen, and (2) insulin increases glucose phosphorylation and conversion to glycogen independent of GSK3.


Assuntos
Quinase 3 da Glicogênio Sintase/fisiologia , Glicogênio/metabolismo , Glicogenólise/fisiologia , Fígado/metabolismo , Período Pós-Prandial/fisiologia , Transdução de Sinais/fisiologia , Animais , Modelos Animais de Doenças , Técnica Clamp de Glucose , Glucose-6-Fosfato/metabolismo , Hiperinsulinismo/metabolismo , Hiperinsulinismo/fisiopatologia , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
11.
Nat Med ; 18(3): 388-95, 2012 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-22344295

RESUMO

Considerable data support the idea that forkhead box O1 (Foxo1) drives the liver transcriptional program during fasting and is then inhibited by thymoma viral proto-oncogene 1 (Akt) after feeding. Here we show that mice with hepatic deletion of Akt1 and Akt2 were glucose intolerant, insulin resistant and defective in their transcriptional response to feeding in the liver. These defects were normalized with concomitant liver-specific deletion of Foxo1. Notably, in the absence of both Akt and Foxo1, mice adapted appropriately to both the fasted and fed state, and insulin suppressed hepatic glucose production normally. A gene expression analysis revealed that deletion of Akt in liver led to the constitutive activation of Foxo1-dependent gene expression, but again, concomitant ablation of Foxo1 restored postprandial regulation, preventing the inhibition of the metabolic response to nutrient intake caused by deletion of Akt. These results are inconsistent with the canonical model of hepatic metabolism in which Akt is an obligate intermediate for proper insulin signaling. Rather, they show that a major role of hepatic Akt is to restrain the activity of Foxo1 and that in the absence of Foxo1, Akt is largely dispensable for insulin- and nutrient-mediated hepatic metabolic regulation in vivo.


Assuntos
Fatores de Transcrição Forkhead/metabolismo , Insulina/metabolismo , Fígado/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Células Cultivadas , Ingestão de Alimentos , Jejum/metabolismo , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Intolerância à Glucose/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Insulina/genética , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais
12.
Cell Metab ; 14(4): 516-27, 2011 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-21982711

RESUMO

Under conditions of obesity and insulin resistance, the serine/threonine protein kinase Akt/PKB is required for lipid accumulation in liver. Two forkhead transcription factors, FoxA2 and FoxO1, have been suggested to function downstream of and to be negatively regulated by Akt and are proposed as key determinants of hepatic triglyceride content. In this study, we utilize genetic loss of function experiments to show that constitutive activation of neither FoxA2 nor FoxO1 can account for the protection from steatosis afforded by deletion of Akt2 in liver. Rather, another downstream target positively regulated by Akt, the mTORC1 complex, is required in vivo for de novo lipogenesis and Srebp1c expression. Nonetheless, activation of mTORC1 and SREBP1c is not sufficient to drive postprandial lipogenesis in the absence of Akt2. These data show that insulin signaling through Akt2 promotes anabolic lipid metabolism independent of Foxa2 or FoxO1 and through pathways additional to the mTORC1-dependent activation of SREBP1c.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Antirreumáticos/farmacologia , Aurotioglucose/farmacologia , Dieta Hiperlipídica , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Fator 3-beta Nuclear de Hepatócito/metabolismo , Insulina/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Camundongos Knockout , Complexos Multiproteicos , Proteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/deficiência , Proteínas Proto-Oncogênicas c-akt/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Serina-Treonina Quinases TOR , Triglicerídeos/metabolismo
13.
Crit Rev Biochem Mol Biol ; 46(3): 200-15, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21599535

RESUMO

The increasing prevalence of overnutrition and reduced activity has led to a worldwide epidemic of obesity. In many cases, this is associated with insulin resistance, an inability of the hormone to direct its physiological actions appropriately. A number of disease states accompany insulin resistance such as type 2 diabetes mellitus, the metabolic syndrome, and non-alcoholic fatty liver disease. Though the pathways by which insulin controls hepatic glucose output have been of intense study in recent years, considerably less attention has been devoted to how lipid metabolism is regulated. Thus, both the proximal signaling pathways as well as the more distal targets of insulin remain uncertain. In this review, we consider the signaling pathways by which insulin controls the synthesis and accumulation of lipids in the mammalian liver and, in particular, how this might lead to abnormal triglyceride deposition in liver during insulin-resistant states.


Assuntos
Glucose/metabolismo , Insulina/química , Insulina/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Fígado/patologia , Transdução de Sinais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Dislipidemias/metabolismo , Fígado Gorduroso/epidemiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Glucose/química , Humanos , Resistência à Insulina , Lipídeos/biossíntese , Lipídeos/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteína Oncogênica v-akt/química , Proteína Oncogênica v-akt/metabolismo , Receptor de Insulina/química , Receptor de Insulina/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/química , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo
14.
Cell Metab ; 10(5): 405-18, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19883618

RESUMO

Insulin drives the global anabolic response to nutrient ingestion, regulating both carbohydrate and lipid metabolism. Previous studies have demonstrated that Akt2/protein kinase B is critical to insulin's control of glucose metabolism, but its role in lipid metabolism has remained controversial. Here, we show that Akt2 is required for hepatic lipid accumulation in obese, insulin-resistant states induced by either leptin deficiency or high-fat diet feeding. Lep(ob/ob) mice lacking hepatic Akt2 failed to amass triglycerides in their livers, associated with and most likely due to a decrease in lipogenic gene expression and de novo lipogenesis. However, Akt2 is also required for steatotic pathways unrelated to fatty acid synthesis, as mice fed high-fat diet had reduced liver triglycerides in the absence of hepatic Akt2 but did not exhibit changes in lipogenesis. These data demonstrate that Akt2 is a requisite component of the insulin-dependent regulation of lipid metabolism during insulin resistance.


Assuntos
Resistência à Insulina/fisiologia , Leptina/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Gorduras na Dieta/administração & dosagem , Leptina/antagonistas & inibidores , Leptina/genética , Camundongos , Camundongos Knockout , Camundongos Obesos , Obesidade/etiologia , Obesidade/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Triglicerídeos/metabolismo
15.
Exp Cell Res ; 292(1): 78-88, 2004 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-14720508

RESUMO

Members of the sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) family are transmembrane proteins that are essential for the function of intracellular Ca(2+) storage organelles. We found that overexpression of avian muscle SERCA1a in transfected mouse fibroblasts led to the appearance of tubular membrane bundles that we termed plaques. These structures were generated in transfected cells when SERCA1a protein expression approached the endogenous level measured in chicken skeletal muscle. Plaque membranes had associated ribosomes and contained endoplasmic reticulum (ER) proteins. Endogenous ER protein levels were not elevated in SERCA1a-expressing cells, indicating that plaques were not generalized proliferations of ER but rather a reorganization of existing organelle membrane. Plaque formation also was observed in cells expressing a green fluorescent protein-SERCA1a fusion protein (GFP-SERCA1a). GFP-SERCA1a molecules displayed extensive lateral mobility between plaques, suggesting the presence of membrane continuities between these structures. Plaques were induced in cells expressing cDNA encoding a catalytically silent SERCA1a mutant indicating that ER redistribution was driven by a structural feature of the enzyme. SERCA1a-induced plaque formation shares some characteristics of sarcoplasmic reticulum (SR) biogenesis during muscle differentiation, and high-level SERCA1a expression in vivo may contribute to the formation of SR from ER during embryonic myogenesis.


Assuntos
ATPases Transportadoras de Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Fibroblastos/metabolismo , Membranas Intracelulares/metabolismo , Músculo Esquelético/enzimologia , Retículo Sarcoplasmático/enzimologia , Animais , Cálcio/metabolismo , ATPases Transportadoras de Cálcio/genética , Linhagem Celular , Embrião de Galinha , Citosol/química , Fibroblastos/ultraestrutura , Proteínas de Fluorescência Verde , Membranas Intracelulares/ultraestrutura , Proteínas Luminescentes/metabolismo , Camundongos , Mutação , Organelas/metabolismo , Organelas/ultraestrutura , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA