RESUMO
AIMS: To develop and validate a machine learning (ML) algorithm to identify undiagnosed hepatitis C virus (HCV) patients, in order to facilitate prioritisation of patients for targeted HCV screening. METHODS: This retrospective study used ambulatory electronic medical records (EMR) from January 2015 to February 2020. A Gradient Boosting Trees algorithm was trained using patient records to predict initial HCV diagnosis and was validated on a temporally independent held-out cross-section of the data. The fold improvement in precision (proportion of patients identified by the algorithm who are HCV positive) over universal screening was examined and compared with risk-based screening. RESULTS: 21 508 positive (HCV diagnosed) and 28.2M unlabelled (lacking evidence of HCV diagnosis) patients met the inclusion criteria for the study. After down-sampling unlabelled patients to aid the algorithm's learning process, 16.2M unlabelled patients entered the analysis. Performance of the algorithm was compared with universal screening on the held-out cross-section, which had an incidence of HCV diagnoses of 0.02%. The algorithm achieved a 101.0 ×, 18.0 × and 5.1 × fold improvement in precision over universal screening at 5%, 20% and 50% levels of recall. When compared with risk-based screening, the algorithm required fewer patients to be screened and improved precision. CONCLUSIONS: This study presents strong evidence towards the use of ML on EMR data for the prioritisation of patients for targeted HCV testing with potential to improve efficiency of resource utilisation, thereby reducing the workload for clinicians and saving healthcare costs. A prospective interventional study would allow for further validation before use in a clinical setting.
Assuntos
Hepacivirus , Hepatite C , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Registros Eletrônicos de Saúde , Hepatite C/diagnóstico , Hepatite C/epidemiologia , Aprendizado de MáquinaRESUMO
OBJECTIVES: To develop and evaluate machine learning models to detect patients with suspected undiagnosed non-alcoholic steatohepatitis (NASH) for diagnostic screening and clinical management. METHODS: In this retrospective observational non-interventional study using administrative medical claims data from 1 463 089 patients, gradient-boosted decision trees were trained to detect patients with likely NASH from an at-risk patient population with a history of obesity, type 2 diabetes mellitus, metabolic disorder or non-alcoholic fatty liver (NAFL). Models were trained to detect likely NASH in all at-risk patients or in the subset without a prior NAFL diagnosis (at-risk non-NAFL patients). Models were trained and validated using retrospective medical claims data and assessed using area under precision recall curves and receiver operating characteristic curves (AUPRCs and AUROCs). RESULTS: The 6-month incidences of NASH in claims data were 1 per 1437 at-risk patients and 1 per 2127 at-risk non-NAFL patients . The model trained to detect NASH in all at-risk patients had an AUPRC of 0.0107 (95% CI 0.0104 to 0.0110) and an AUROC of 0.84. At 10% recall, model precision was 4.3%, which is 60× above NASH incidence. The model trained to detect NASH in the non-NAFL cohort had an AUPRC of 0.0030 (95% CI 0.0029 to 0.0031) and an AUROC of 0.78. At 10% recall, model precision was 1%, which is 20× above NASH incidence. CONCLUSION: The low incidence of NASH in medical claims data corroborates the pattern of NASH underdiagnosis in clinical practice. Claims-based machine learning could facilitate the detection of patients with probable NASH for diagnostic testing and disease management.