Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Oncogene ; 32(20): 2592-600, 2013 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-22777349

RESUMO

Primary mitochondrial dysfunction commonly leads to failure in cellular adaptation to stress. Paradoxically, however, nonsynonymous mutations of mitochondrial DNA (mtDNA) are frequently found in cancer cells and may have a causal role in the development of resistance to genotoxic stress induced by common chemotherapeutic agents, such as cis-diammine-dichloroplatinum(II) (cisplatin, CDDP). Little is known about how these mutations arise and the associated mechanisms leading to chemoresistance. Here, we show that the development of adaptive chemoresistance in the A549 non-small-cell lung cancer cell line to CDDP is associated with the hetero- to homoplasmic shift of a nonsynonymous mutation in MT-ND2, encoding the mitochondrial Complex-I subunit ND2. The mutation resulted in a 50% reduction of the NADH:ubiquinone oxidoreductase activity of the complex, which was compensated by increased biogenesis of respiratory chain complexes. The compensatory mitochondrial biogenesis was most likely mediated by the nuclear co-activators peroxisome proliferator-activated receptor gamma co-activator-1α (PGC-1α) and PGC-1ß, both of which were significantly upregulated in the CDDP-resistant cells. Importantly, both transient and stable silencing of PGC-1ß re-established the sensitivity of these cells to CDDP-induced apoptosis. Remarkably, the PGC-1ß-mediated CDDP resistance was independent of the mitochondrial effects of the co-activator. Altogether, our results suggest that partial respiratory chain defects because of mtDNA mutations can lead to compensatory upregulation of nuclear transcriptional co-regulators, in turn mediating resistance to genotoxic stress.


Assuntos
Proteínas de Transporte/metabolismo , DNA Mitocondrial , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Adaptação Fisiológica , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , NADH Desidrogenase/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Proteínas de Ligação a RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Arch Biochem Biophys ; 486(1): 73-80, 2009 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-19327338

RESUMO

Mammalian life span can be controlled by p66Shc protein through regulation of cellular response to oxidative stress. We investigated age-related changes in the amount of p66Shc and its Ser36-phosphorylated form in various mouse organs and tissues and correlated it with the level of antioxidant enzymes. Comparing to the newborn, in adult 6-month-old mice, the level of p66Shc was increased particularly in liver, lungs, skin and diaphragm. In older animals the level of p66Shc decreased while signaling pathway responsible for Ser36 phosphorylation of p66Shc protein seemed to be continually enhanced. The amount of p66Shc phosphorylated at Ser36, significantly increased with age, resulted in higher free radical production and, in consequence accumulation of damages caused by free radicals. The increased amount of Ser36-phosphorylated p66Shc in livers of 12- and 23-month-old mice was correlated with the decreased level of antioxidant enzymes. Moreover, we found that p66Shc is a resident of mitochondria- and plasma membrane-associated membranes and that its level there depends on the age of animal.


Assuntos
Envelhecimento/metabolismo , Proteínas Adaptadoras da Sinalização Shc/metabolismo , Animais , Animais Recém-Nascidos , Antioxidantes/metabolismo , Células Cultivadas , Feminino , Radicais Livres/metabolismo , Fígado/metabolismo , Camundongos , Modelos Biológicos , Fosforilação , Serina/química , Proteínas Adaptadoras da Sinalização Shc/química , Proteína 1 de Transformação que Contém Domínio 2 de Homologia de Src , Frações Subcelulares/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA